Variable selection in model-based clustering and discriminant analysis with a regularization approach

被引:12
作者
Celeux, Gilles [1 ,2 ]
Maugis-Rabusseau, Cathy [3 ]
Sedki, Mohammed [4 ,5 ]
机构
[1] INRIA, Dept Math, Btiment 425, F-91405 Orsay, France
[2] Univ Paris Sud, Btiment 425, F-91405 Orsay, France
[3] Univ Toulouse, Inst Math Toulouse, UMR 5219, INSA Toulouse, 135 Ave Rangueil, F-31077 Toulouse 4, France
[4] Paris Sud Univ, Batiment 15-16,16 Ave Paul Vaillant Couturier, F-94807 Villejuif, France
[5] Hop Paul Brousse, INSERM, U1181, Batiment 15-16,16 Ave Paul Vaillant Couturier, F-94807 Villejuif, France
关键词
Variable selection; Lasso; Gaussian mixture; Clustering; Classification;
D O I
10.1007/s11634-018-0322-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Several methods for variable selection have been proposed in model-based clustering and classification. These make use of backward or forward procedures to define the roles of the variables. Unfortunately, such stepwise procedures are slow and the resulting algorithms inefficient when analyzing large data sets with many variables. In this paper, we propose an alternative regularization approach for variable selection in model-based clustering and classification. In our approach the variables are first ranked using a lasso-like procedure in order to avoid slow stepwise algorithms. Thus, the variable selection methodology of Maugis et al. (Comput Stat Data Anal 53:3872-3882, 2000b) can be efficiently applied to high-dimensional data sets.
引用
收藏
页码:259 / 278
页数:20
相关论文
共 31 条
[1]  
[Anonymous], TPAMI
[2]  
[Anonymous], ARXIV14110606
[3]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[4]   Assessing a mixture model for clustering with the integrated completed likelihood [J].
Biernacki, C ;
Celeux, G ;
Govaert, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (07) :719-725
[5]   Discriminative variable selection for clustering with the sparse Fisher-EM algorithm [J].
Bouveyron, Charles ;
Brunet-Saumard, Camille .
COMPUTATIONAL STATISTICS, 2014, 29 (3-4) :489-513
[6]   GAUSSIAN PARSIMONIOUS CLUSTERING MODELS [J].
CELEUX, G ;
GOVAERT, G .
PATTERN RECOGNITION, 1995, 28 (05) :781-793
[7]  
Celeux G, 2014, J SFDS, V155, P57
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   Selection of Variables for Cluster Analysis and Classification Rules [J].
Fraiman, Ricardo ;
Justel, Ana ;
Svarc, Marcela .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (483) :1294-1303
[10]  
Friedman, 2014, GLASSO GRAPHICAL LAS