On a Sobolev inequality with remainder terms in the Grushin plane

被引:1
|
作者
Yang, Qiaohua [1 ]
Su, Dan [2 ]
Kong, Yinying [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[3] Guangdong Univ Finance & Econ, Sch Math & Stat, Guangzhou 510320, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Sobolev inequality; Grushin plane; EQUATIONS; SYMMETRY;
D O I
10.1016/j.jmaa.2013.10.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the Sobolev inequality for Grushin operator like partial derivative(2)(x) + 4x(2)partial derivative(2)(y), can be refined by adding a remainder term to the distance to the set of optimizers. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 368
页数:9
相关论文
共 50 条
  • [1] On a Sobolev inequality with remainder terms
    Lu, GZ
    Wei, JC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) : 75 - 84
  • [2] Remainder Terms in the Fractional Sobolev Inequality
    Chen, Shibing
    Frank, Rupert L.
    Weth, Tobias
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1381 - 1397
  • [3] Remainder terms of a nonlocal Sobolev inequality
    Deng, Shengbing
    Tian, Xingliang
    Yang, Minbo
    Zhao, Shunneng
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (05) : 1652 - 1667
  • [4] Remainder terms in a higher order Sobolev inequality
    Gazzola, Filippo
    Weth, Tobias
    ARCHIV DER MATHEMATIK, 2010, 95 (04) : 381 - 388
  • [5] Remainder terms in a higher order Sobolev inequality
    Filippo Gazzola
    Tobias Weth
    Archiv der Mathematik, 2010, 95 : 381 - 388
  • [6] SOBOLEV INEQUALITIES WITH REMAINDER TERMS
    BREZIS, H
    LIEB, EH
    JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) : 73 - 86
  • [7] Isoperimetric inequality in the Grushin plane
    Roberto Monti
    Daniele Morbidelli
    The Journal of Geometric Analysis, 2004, 14 : 355 - 368
  • [8] Sharp remainder of the Poincare inequality for Baouendi-Grushin vector fields
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (03)
  • [9] Sharp Sobolev inequalities with lower order remainder terms
    Druet, O
    Hebey, E
    Vaugon, M
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 353 (01) : 269 - 289
  • [10] Hardy–Sobolev inequalities for the biharmonic operator with remainder terms
    Tommaso Passalacqua
    Bernhard Ruf
    Journal of Fixed Point Theory and Applications, 2014, 15 : 405 - 431