Potential for the Formation of N-Nitrosamines during the Manufacture of Active Pharmaceutical Ingredients: An Assessment of the Risk Posed by Trace Nitrite in Water

被引:93
作者
Ashworth, Ian W. [2 ]
Dirat, Olivier [1 ]
Teasdale, Andrew [2 ]
Whiting, Matthew [3 ]
机构
[1] Pfizer R&D UK Ltd, Sandwich CT13 9NJ, Kent, England
[2] AstraZeneca, Chem Dev Pharmaceut Technol & Dev, Operat, Macclesfield SK10 2NA, Cheshire, England
[3] GlaxoSmithKline, Chem Dev, Stevenage SG1 2NY, Herts, England
关键词
nitrosation; nitrite; N-nitroso dimethylamine; nitrosamine; kinetic modeling; NITROUS-ACID; DISSOCIATION-CONSTANTS; NITROSATIVE CLEAVAGE; AQUEOUS-SOLUTION; KINETICS; REACTIVITY; EQUILIBRIUM; STABILITY; MECHANISM; NITROSODIMETHYLAMINE;
D O I
10.1021/acs.oprd.0c00224
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Regulatory requests that marketing authorization holders for chemically synthesized active substances risk assess their medicines for the potential presence of N-nitrosamines have led to a renewed interest in amine nitrosation. We have used published mechanistic and kinetic studies of amine nitrosation to assess the risk that traces of nitrite in the water used during active pharmaceutical ingredient (API) manufacturing could give rise to significant levels of N-nitrosamines. We conclude that the levels of nitrite typically found in water used for API manufacture are very low (<0.01 mg/L) and will not give rise to significant levels of N-nitrosamines through reaction with basic secondary amines (pK(a) > 9.5) in the majority of cases. The use of less basic amines, elevated processing temperatures, or low pH conditions in combination with elevated levels of nitrite have the potential to generate levels of N-nitrosamines that could lead to significant quantities being present in the isolated API if the downstream processing does not provide an adequate purge. The kinetic models described may be used to risk assess specific situations or processes. For example, the addition of traces of dimethylamine to a nitrosation reaction is predicted to lead to the rapid, quantitative formation of N-nitroso dimethylamine. Simple tertiary alkylamines can nitrosate via a dealkylative process, which is significantly slower than secondary amine nitrosation. Therefore, they do not represent a risk of N-nitrosamine formation under conditions where there is no significant risk of secondary amine nitrosation.
引用
收藏
页码:1629 / 1646
页数:18
相关论文
共 85 条
[1]  
Abel E, 1928, Z PHYS CHEM-STOCH VE, V134, P279
[2]   IDENTIFICATION OF MINOR NITROSATION PRODUCTS OF THE ALKALOID GRAMINE BY MASS-SPECTROMETRY [J].
AHMAD, MU ;
LIBBEY, LM ;
SCANLAN, RA .
FOOD AND CHEMICAL TOXICOLOGY, 1987, 25 (11) :867-870
[3]  
[Anonymous], 2020, WAT QUAL LA12 9DR
[4]  
[Anonymous], 2020, WAT QUAL RES CORK
[5]  
[Anonymous], 2020, WAT QUAL RES CT13 9E
[6]  
[Anonymous], 2020, WAT QUAL RES DD10 8E
[7]  
[Anonymous], 2020, STOCKH WAT AN REP
[8]  
[Anonymous], 2020, WAT PHARM PURP
[9]  
[Anonymous], 2020, EMACHMPICH838122013
[10]  
[Anonymous], 2017, WAT QUAL REP