Measurement of Interlayer Screening Length of Layered Graphene by Plasmonic Nanostructure Resonances

被引:41
作者
Chen, Hsiang-An [1 ]
Hsin, Cheng-Lun [2 ,4 ]
Huang, Yu-Ting [5 ]
Tang, Ming Lee [1 ]
Dhuey, Scott [6 ]
Cabrini, Stefano [6 ]
Wu, Wen-Wei [5 ]
Leone, Stephen R. [1 ,3 ,7 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[4] Natl Cent Univ, Dept Elect Engn, Tao Yuan 32001, Taiwan
[5] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[6] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA
关键词
SILVER NANOPARTICLES; RAMAN-SCATTERING; FILMS; SPECTROSCOPY; SUBSTRATE; DEVICES; SIO2;
D O I
10.1021/jp312363x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The variation in localized surface plasmon resonances of single Au nanodisks (diameter 100 nm and height 25 nm) on 0-13 graphene layers is investigated using dark-field scattering spectroscopy to obtain the graphene electric field screening length. For nanodisks (NDs) with and without underlying graphene layers on a SiO2 (300 nm)/Si substrate, the plasmon resonance red shifts from 604 to 620 nm with increasing graphene layers. The spectra of the plasmonic nanostructures obey an exponential saturation function versus increasing number of layers of graphene from 0 to 13. As a conducting film, the graphene layers screen the electric field generated by the plasmonic resonance of the Au NDs in the vicinity of the interface, and the red shifts of the resonance wavelength are explained in the framework of the electromagnetic field coupling between in-plane antiparallel image dipoles in the graphene layers and the ND dipole. A screening length of 1.2 +/- 0.2 nm, equivalent to 3-4 graphene layers, is experimentally obtained, in good agreement with the measurement by field-effect transistors and theoretical calculation in doped graphene. The resonance shift of plasmonic nanostructures on a layered graphene system provides an alternative and convenient method for screening length measurement of graphene films.
引用
收藏
页码:22211 / 22217
页数:7
相关论文
共 38 条
[1]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[2]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[3]   Localized Surface Plasmon Resonance in Lithographically Fabricated Single Gold Nanowires [J].
Chen, Hsiang-An ;
Lin, Hsin-Yu ;
Lin, Heh-Nan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (23) :10359-10364
[4]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[5]   Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Mele, E. J. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (01) :7-11
[6]   Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries [J].
Funston, Alison M. ;
Novo, Carolina ;
Davis, Tim J. ;
Mulvaney, Paul .
NANO LETTERS, 2009, 9 (04) :1651-1658
[7]  
Griffiths D.J., 1999, Introduction to Electrodynamics, V3rd, P110
[8]   Charge distribution and screening in layered graphene systems [J].
Guinea, F. .
PHYSICAL REVIEW B, 2007, 75 (23)
[9]   Raman scattering from high-frequency phonons in supported n-graphene layer films [J].
Gupta, A. ;
Chen, G. ;
Joshi, P. ;
Tadigadapa, S. ;
Eklund, P. C. .
NANO LETTERS, 2006, 6 (12) :2667-2673
[10]   Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms [J].
Haes, AJ ;
Stuart, DA ;
Nie, SM ;
Van Duyne, RP .
JOURNAL OF FLUORESCENCE, 2004, 14 (04) :355-367