Purcell effect in hyperbolic metamaterial resonators

被引:65
作者
Slobozhanyuk, Alexey P. [1 ,2 ]
Ginzburg, Pavel [3 ,4 ]
Powell, David A. [1 ]
Iorsh, Ivan [2 ]
Shalin, Alexander S. [2 ,5 ,6 ]
Segovia, Paulina [3 ]
Krasavin, Alexey V. [3 ]
Wurtz, Gregory A. [3 ]
Podolskiy, Viktor A. [7 ]
Belov, Pavel A. [2 ]
Zayats, Anatoly V. [3 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[2] ITMO Univ, Dept Nanophoton & Metamat, St Petersburg 197101, Russia
[3] Kings Coll London, Dept Phys, London WC2R 2LS, England
[4] Tel Aviv Univ, Fleischman Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[5] RAS, Ulyanovsk Branch, Kotelnikov Inst Radio Engn & Elect, Ulyanovsk 432011, Russia
[6] Ulyanovsk State Univ, Ulyanovsk 432017, Russia
[7] Univ Massachusetts Lowell, Dept Phys & Appl Phys, Lowell, MA 01854 USA
基金
英国工程与自然科学研究理事会; 俄罗斯科学基金会; 俄罗斯基础研究基金会; 澳大利亚研究理事会;
关键词
PLASMON-POLARITONS; EMISSION; LIGHT; NANOSCALE;
D O I
10.1103/PhysRevB.92.195127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The radiation dynamics of optical emitters can be manipulated by properly designed material structures modifying local density of photonic states, a phenomenon often referred to as the Purcell effect. Plasmonic nanorod metamaterials with hyperbolic dispersion of electromagnetic modes are believed to deliver a significant Purcell enhancement with both broadband and nonresonant nature. Here, we have investigated finite-size resonators formed by nanorod metamaterials and shown that the main mechanism of the Purcell effect in such resonators originates from the supported hyperbolic modes, which stem from the interacting cylindrical surface plasmon modes of the finite number of nanorods forming the resonator. The Purcell factors delivered by these resonator modes reach several hundreds, which is up to 5 times larger than those in the e-near-zero regime. It is shown that while the Purcell factor delivered by the Fabry-Perot modes depends on the resonator size, the decay rate in the e-near-zero regime is almost insensitive to geometry. The presented analysis shows a possibility to engineer emission properties in structured metamaterials, taking into account their internal composition.
引用
收藏
页数:8
相关论文
共 42 条
[1]  
Agioand M., 2013, OPTICAL ANTENNAS
[2]   Generation of single optical plasmons in metallic nanowires coupled to quantum dots [J].
Akimov, A. V. ;
Mukherjee, A. ;
Yu, C. L. ;
Chang, D. E. ;
Zibrov, A. S. ;
Hemmer, P. R. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2007, 450 (7168) :402-406
[3]   Epsilon-near-zero metamaterials and electromagnetic sources:: Tailoring the radiation phase pattern [J].
Alu, Andrea ;
Silveirinha, Mario G. ;
Salandrino, Alessandro ;
Engheta, Nader .
PHYSICAL REVIEW B, 2007, 75 (15)
[4]  
[Anonymous], 2014, CST Microwave Studio
[5]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933
[6]   Nanowire metamaterials with extreme optical anisotropy [J].
Elser, Justin ;
Wangberg, Robyn ;
Podolskiy, Viktor A. ;
Narimanov, Evgenii E. .
APPLIED PHYSICS LETTERS, 2006, 89 (26)
[7]   On the epsilon near zero condition for spatially dispersive materials [J].
Forati, Ebrahim ;
Hanson, George W. .
NEW JOURNAL OF PHYSICS, 2013, 15
[8]   Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials [J].
Ginzburg, P. ;
Rodriguez Fortuno, F. J. ;
Wurtz, G. A. ;
Dickson, W. ;
Murphy, A. ;
Morgan, F. ;
Pollard, R. J. ;
Iorsh, I. ;
Atrashchenko, A. ;
Belov, P. A. ;
Kivshar, Y. S. ;
Nevet, A. ;
Ankonina, G. ;
Orenstein, M. ;
Zayats, A. V. .
OPTICS EXPRESS, 2013, 21 (12) :14907-14917
[9]   Impact of nonradiative line broadening on emission in photonic and plasmonic cavities [J].
Ginzburg, Pavel ;
Krasavin, Alexey V. ;
Richards, David ;
Zayats, Anatoly V. .
PHYSICAL REVIEW A, 2014, 90 (04)
[10]   Localized Surface Plasmon Resonances in Spatially Dispersive Nano-Objects: Phenomenological Treatise [J].
Ginzburg, Pavel ;
Zayats, Anatoly V. .
ACS NANO, 2013, 7 (05) :4334-4342