Recurrence equations and their classical orthogonal polynomial solutions

被引:26
作者
Koepf, W
Schmersau, D
机构
[1] Hsch Tech Wirtschaft & Kultur Leipzig, Dept IMN, D-04251 Leipzig, Germany
[2] Free Univ Berlin, D-1000 Berlin, Germany
关键词
computer algebra; Maple; differential equation; Q-difference equation; structure formula;
D O I
10.1016/S0096-3003(01)00078-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical orthogonal polynomials are given as the polynomial solutions p, (x) of the differential equation sigma(x)y"(x) + tau(x)y'(x) + lambda(n)y(x) = 0, where sigma(x) is a polynomial of at most second degree and tau(x) is a polynomial of first degree. In this paper a general method to express the coefficients A(n), B-n and C-n of the recurrence equation p(n+1)(x) = (A(n)x + B-n)p(n)(x) - C(n)p(n-1)(x) in terms of the given polynomials sigma(x) and tau(x) is used to present an algorithm to determine the classical orthogonal polynomial solutions of any given holonomic three-term recurrence equation, i.e., a homogeneous linear three-term recurrence equation with polynomial coefficients. In a similar way, classical discrete orthogonal polynomial solutions of holonomic three-term recurrence equations can be determined by considering their corresponding difference equation sigma(x)Deltadely(x) + tau(x)Deltay(x) + lambda(n)y(x) = 0, where Deltay(x) = y(x + 1) - y(x) and Deltay(x) = y(x) - y(x - 1) denote the forward and backward difference operators, respectively, and a similar approach applies to classical q-orthogonal polynomials, being solutions of the q-difference equation sigma(x)D(q)D(1/q)y(x) + tau(x)D(q)y(x) + lambda(q,n)y(x) = 0. where D(q)f(x) = f(qx) - f(x)/(q-1)x, qnot equal 1. denotes the q-difference operator. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:303 / 327
页数:25
相关论文
共 18 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   THE BESSEL POLYNOMIALS [J].
ALSALAM, WA .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (04) :529-545
[3]  
[Anonymous], 1991, CLASSICAL ORTHOGONAL, DOI DOI 10.1007/978-3-642-74748-9
[4]  
[Anonymous], 1930, B AM MATH SOC, DOI [DOI 10.1090/S0002-9904-1930-04888-0, 10.1090/s0002-9904-1930- 04888-0]
[5]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[6]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[7]  
Hahn W., 1949, MATH NACHR, V2, P4, DOI 10.1002/mana.19490020103
[8]  
Koekoek R., 1998, 9817 DELFT U TECHN F
[9]   Representations of orthogonal polynomials [J].
Koepf, W ;
Schmersau, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 90 (01) :57-94
[10]  
KOEPF W, 1998, HYPERGEOMETRIC SUMMA