Set-theoretic complete intersection monomial curves in affine four space (vol 372, pg 463, 2012)

被引:0
作者
Eto, Kazufumi [1 ]
机构
[1] Nippon Inst Technol, Dept Math, Saitama 3458501, Japan
关键词
Lattice ideal; Set-theoretic complete intersection; Monomial curve;
D O I
10.1016/j.jalgebra.2013.01.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every monomial curve C in affine four space, defined by natural numbers n(1), n(2), n(3) and n(4), is a set-theoretic complete intersection, if one of n(1), n(2), n(3), n(4) is less than or equal to 14. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:426 / 431
页数:6
相关论文
共 3 条
[1]   Set-theoretic complete intersection lattice ideals in monoid rings [J].
Eto, K .
JOURNAL OF ALGEBRA, 2006, 299 (02) :689-706
[2]   Set-theoretic complete intersection monomial curves in affine four space [J].
Eto, Kazufumi .
JOURNAL OF ALGEBRA, 2012, 372 :463-479
[3]  
Kunz E., 1985, INTRO COMMUTATIVE AL