Oil industry value chain simulation with learning agents
被引:7
|
作者:
Fuller, Daniel Barry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, Brazil
Fuller, Daniel Barry
[1
]
Martins Ferreira Filho, Virgilio Jose
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, Brazil
Martins Ferreira Filho, Virgilio Jose
[1
]
de Arruda, Edilson Fernandes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, Brazil
de Arruda, Edilson Fernandes
[1
]
机构:
[1] Univ Fed Rio de Janeiro, Grad Sch & Res Engn, Alberto Luiz Coimbra Inst, Ind Engn Program, POB 68507, BR-21941972 Rio De Janeiro, RJ, Brazil
Simulation is an important tool to evaluate many systems, but it often requires detailed knowledge of each specific system and a long time to generate useful results and insights. A large portion of the required time stems from the need to define operational rules and build valid models that represent them properly. To shorten this model construction time, a learning-agent-based model is proposed. This technique is recommended for cases where optimal policies are not known or hard and costly to unequivocally determine, as it enables the simulation agents to learn good policies "by themselves". A model is built with this technique and a representative case study of oil industry value chain simulation is presented as a proof of concept. (c) 2018 Elsevier Ltd. All rights reserved.
机构:
Univ South Australia, Knowledge Based Intelligent Engn Syst Ctr, Sch Elect & Informat Engn, Mawson Lakes, SA 5095, AustraliaUniv South Australia, Knowledge Based Intelligent Engn Syst Ctr, Sch Elect & Informat Engn, Mawson Lakes, SA 5095, Australia
Leng, Jinsong
Fyfe, Colin
论文数: 0引用数: 0
h-index: 0
机构:
Univ West Scotland, Appl Comp Intelligence Res Unit, Hamilton, ScotlandUniv South Australia, Knowledge Based Intelligent Engn Syst Ctr, Sch Elect & Informat Engn, Mawson Lakes, SA 5095, Australia
Fyfe, Colin
Jain, Lakhmi
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Australia, Knowledge Based Intelligent Engn Syst Ctr, Sch Elect & Informat Engn, Mawson Lakes, SA 5095, AustraliaUniv South Australia, Knowledge Based Intelligent Engn Syst Ctr, Sch Elect & Informat Engn, Mawson Lakes, SA 5095, Australia
机构:
Excelia Business Sch CERIIM, Excelia Grp, 102 Rue de Coureilles, F-17000 La Rochelle, FranceExcelia Business Sch CERIIM, Excelia Grp, 102 Rue de Coureilles, F-17000 La Rochelle, France
Vlachos, Ilias
Reddy, Pulagam Gautam
论文数: 0引用数: 0
h-index: 0
机构:
Cranfield Univ, Sch Management, Cranfield, EnglandExcelia Business Sch CERIIM, Excelia Grp, 102 Rue de Coureilles, F-17000 La Rochelle, France