Nonlinear Sparse Component Analysis with a Reference: Variable Selection in Genomics and Proteomics

被引:0
作者
Kopriva, Ivica [1 ]
Kapitanovic, Sanja [2 ]
Cacev, Tamara [2 ]
机构
[1] Rudjer Boskovic Inst, Div Laser & Atom R&D, Zagreb 10000, Croatia
[2] Rudjer Boskovic Inst, Div Mol Med, Zagreb 10000, Croatia
来源
LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION, LVA/ICA 2015 | 2015年 / 9237卷
关键词
Variable selection; Nonlinear mixture model; Empirical kernel maps; Sparse component analysis; CANCER; CLASSIFICATION; ALGORITHMS; PATTERNS; DISCOVERY; SERUM;
D O I
10.1007/978-3-319-22482-4_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many scenarios occurring in genomics and proteomics involve small number of labeled data and large number of variables. To create prediction models robust to overfitting variable selection is necessary. We propose variable selection method using nonlinear sparse component analysis with a reference representing either negative (healthy) or positive (cancer) class. Thereby, component comprised of cancer related variables is automatically inferred from the geometry of nonlinear mixture model with a reference. Proposed method is compared with 3 supervised and 2 unsupervised variable selection methods on two-class problems using 2 genomic and 2 proteomic datasets. Obtained results, which include analysis of biological relevance of selected genes, are comparable with those achieved by supervised methods. Thus, proposed method can possibly perform better on unseen data of the same cancer type.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 50 条
[31]   Quantile function regression and variable selection for sparse models [J].
Yoshida, Takuma .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04) :1196-1221
[32]   Learning sparse gradients for variable selection and dimension reduction [J].
Gui-Bo Ye ;
Xiaohui Xie .
Machine Learning, 2012, 87 :303-355
[33]   SPARSE REGULARIZATION FOR BI-LEVEL VARIABLE SELECTION [J].
Matsui, Hidetoshi .
JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2015, 28 (01) :83-103
[34]   Bayesian variable selection for globally sparse probabilistic PCA [J].
Bouveyron, Charles ;
Latouche, Pierre ;
Mattei, Pierre-Alexandre .
ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02) :3036-3070
[35]   Variational discriminant analysis with variable selection [J].
Weichang Yu ;
John T. Ormerod ;
Michael Stewart .
Statistics and Computing, 2020, 30 :933-951
[36]   Model population analysis for variable selection [J].
Li, Hong-Dong ;
Liang, Yi-Zeng ;
Xu, Qing-Song ;
Cao, Dong-Sheng .
JOURNAL OF CHEMOMETRICS, 2010, 24 (7-8) :418-423
[37]   Improved leaps and bounds variable selection algorithm based on principal component analysis [J].
Zhang, Wenjun ;
Wang, Xin ;
Chen, Lin .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 139 :76-83
[38]   A transparent and nonlinear method for variable selection [J].
Wang, Keyao ;
Wang, Huiwen ;
Zhao, Jichang ;
Wang, Lihong .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
[39]   Quadratic Independent Component Analysis Based on Sparse Component [J].
Wang, JingHui ;
Tang, ShuGang .
MATERIALS ENGINEERING AND MECHANICAL AUTOMATION, 2014, 442 :562-567
[40]   Sparse Proteomics Analysis – a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data [J].
Tim O. F. Conrad ;
Martin Genzel ;
Nada Cvetkovic ;
Niklas Wulkow ;
Alexander Leichtle ;
Jan Vybiral ;
Gitta Kutyniok ;
Christof Schütte .
BMC Bioinformatics, 18