Evolution of the Liouville density of a chaotic system

被引:14
作者
Peres, A
Terno, D
机构
[1] Department of Physics, Technion–Israel Institute of Technology, Haifa
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 01期
关键词
D O I
10.1103/PhysRevE.53.284
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An area-preserving map of the unit sphere, consisting of alternating twists and turns, is mostly chaotic. A Liouville density on that sphere is specified by means of its expansion into spherical harmonics. That expansion initially necessitates only a finite number of basis functions. As the dynamical mapping proceeds, it is found that the number of non-negligible coefficients increases exponentially with the number of steps. This is in contrast to the behavior of a Schrodinger wave function, which requires, for the analogous quantum system, a basis of fixed size.
引用
收藏
页码:284 / 290
页数:7
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS, P334
[2]  
ARNOLD VI, 1968, ERGODIC PROBLEMS CLA, P17
[3]  
FORD J, 1986, CHAOTIC DYNAMICS FRA, P1
[4]   LEVEL-TO-LEVEL FLUCTUATIONS OF THE INVERSE PARTICIPATION RATIO IN FINITE QUASI 1D DISORDERED-SYSTEMS [J].
FYODOROV, YV ;
MIRLIN, AD .
PHYSICAL REVIEW LETTERS, 1993, 71 (03) :412-415
[5]  
GASIOROWICZ S, 1974, QUANTUM PHYSICS, P175
[6]  
Haake F., 1987, Zeitschrift fur Physik B (Condensed Matter), V65, P381, DOI 10.1007/BF01303727
[7]   SYMPLECTIC CALCULATION OF LYAPUNOV EXPONENTS [J].
HABIB, S ;
RYNE, RD .
PHYSICAL REVIEW LETTERS, 1995, 74 (01) :70-73
[8]  
HALMOS PR, 1956, LECTURES ERGODIC THE, P34
[10]   INTERMEDIATE STATISTICS OF THE QUASI-ENERGY SPECTRUM AND QUANTUM LOCALIZATION OF CLASSICAL CHAOS [J].
IZRAILEV, FM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07) :865-878