Relativistic harmonic oscillator, the associated equations of motion, and algebraic integration methods

被引:19
作者
Babusci, D. [1 ]
Dattoli, G. [2 ]
Quattromini, M. [2 ]
Sabia, E. [2 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, IT-00044 Rome, Italy
[2] ENEA, Ctr Ric Frascati, IT-00044 Rome, Italy
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
TWISS PARAMETERS; INVARIANT;
D O I
10.1103/PhysRevE.87.033202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the relativistic generalization of the harmonic oscillator problem by addressing different questions regarding its classical aspects. We treat the problem using the formalism of Hamiltonian mechanics. A Lie algebraic technique is used to solve the associated Liouville equations, yielding the phase-space evolution of an ensemble of relativistic particles, subject to a "harmonic" potential. The nonharmonic distortion of the spatial and momentum distributions due to the intrinsic nonlinear nature of the relativistic contributions is discussed. We analyze the relativistic dynamics induced by two types of Hamiltonian, which can be ascribed to those of harmonic oscillator type. Finally, we briefly discuss the quantum aspects of the problem by considering possible strategies for the solution of the associated Salpeter equation. DOI: 10.1103/PhysRevE.87.033202
引用
收藏
页数:7
相关论文
共 22 条
[1]   Use of real Dirac matrices in two-dimensional coupled linear optics [J].
Baumgarten, C. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2011, 14 (11)
[2]  
Bradt H., 2008, ASTROPHYSICAL PROC S
[3]   THEORY OF THE ALTERNATING-GRADIENT SYNCHROTRON [J].
COURANT, ED ;
SNYDER, HS .
ANNALS OF PHYSICS, 1958, 3 (01) :1-48
[4]   ON THE GENERALIZED TWISS PARAMETERS AND COURANT-SNYDER INVARIANT IN CLASSICAL AND QUANTUM OPTICS [J].
DATTOLI, G ;
MARI, C ;
RICHETTA, M ;
TORRE, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (03) :269-287
[5]   SPLIT-OPERATOR TECHNIQUE AND SOLUTION OF LIOUVILLE PROPAGATION EQUATIONS [J].
DATTOLI, G ;
GIANNESSI, L ;
OTTAVIANI, PL ;
TORRE, A .
PHYSICAL REVIEW E, 1995, 51 (01) :821-824
[6]  
Dattoli G, 1997, RIV NUOVO CIMENTO, V20, P1
[7]   ANHARMONIC BETATRON MOTION IN LINEARLY POLARIZED UNDULATORS [J].
DATTOLI, G ;
GALLI, M ;
OTTAVIANI, PL .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (11) :7046-7052
[8]   TWISS PARAMETERS AND EVOLUTION OF QUANTUM HARMONIC-OSCILLATOR STATES [J].
DATTOLI, G ;
GALLERANO, GP ;
MARI, C ;
TORRE, A ;
RICHETTA, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (10) :1151-1165
[9]  
Davis H.T., 1962, Introduction to Nonlinear Differential and Integral Equations
[10]   Relativistic aberrations in quantum phase space [J].
Dragoman, D. .
OPTICS COMMUNICATIONS, 2009, 282 (05) :1042-1046