COVERING RELATIONS AND THE EXISTENCE OF TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT SETS

被引:20
作者
Capinski, Maciej J. [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Normally hyperbolic sets; covering relations; Brouwer degree; COMPUTER-ASSISTED PROOF; QUASI-PERIODIC MAPS; PARAMETERIZATION METHOD; MANIFOLDS; COMPUTATION; EQUATIONS; WHISKERS; CHAOS; TORI; SYSTEMS;
D O I
10.3934/dcds.2009.23.705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a topological method for the detection of normally hyperbolic type invariant sets for maps. The invariant set covers a sub-manifold without a boundary in R-k. For the method to hold we only need to assume that the movement of the system transversal to the manifold has directions of topological expansion and contraction. The movement in the direction of the manifold can be arbitrary. The result is based on the method of covering relations and local Brouwer degree theory.
引用
收藏
页码:705 / 725
页数:21
相关论文
共 16 条
[1]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360
[2]   The parameterization method for invariant manifolds III:: Overview and applications [J].
Cabré, X ;
Fontich, E ;
de la Llave, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 218 (02) :444-515
[3]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[4]  
Capinski MJ, 2006, DISCRETE CONT DYN-A, V14, P281
[5]   Positive topological entropy of Chua's circuit: A computer assisted proof [J].
Galias, Z .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02) :331-349
[6]   Computer assisted proof of chaos in the Lorenz equations [J].
Galias, Z ;
Zgliczynski, P .
PHYSICA D, 1998, 115 (3-4) :165-188
[7]   A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity [J].
Haro, A. ;
de la Llave, R. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (01) :142-207
[8]   A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results [J].
Haro, A. ;
de la Llave, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (02) :530-579
[9]  
Haro A, 2006, DISCRETE CONT DYN-B, V6, P1261
[10]   Growing 1D and quasi-2D unstable manifolds of maps [J].
Krauskopf, B ;
Osinga, H .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (01) :404-419