Symmetry measure computation for convex polyhedra

被引:18
作者
Tuzikov, AV [1 ]
Sheynin, SA [1 ]
机构
[1] Byelarussian Acad Sci, Inst Engn Cybernet, Minsk 220012, BELARUS
关键词
symmetry; measures; convex polyhedra; Minkowski addition;
D O I
10.1023/A:1013986402264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper discusses measures and indices of different kind of symmetry (central, reflection, rotation, mirror rotation) for 3D convex shapes. The measures are based on Minkowski addition and inequalities for volume and mixed volume and are valid for convex shapes only. Symmetry index computation in 3D case is a complicated optimization problem. Taking advantage of convex polyhedra we investigate the situations when these indices can be computed efficiently.
引用
收藏
页码:41 / 56
页数:16
相关论文
共 18 条
[1]  
[Anonymous], 1957, VORLESUNGEN INHALT O
[2]  
BEKKER H, 1999, P 2 ANN IASTED INT C, P106
[3]   Mathematical morphological operations of boundary-represented geometric objects [J].
Ghosh, PK ;
Haralick, RM .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1996, 6 (2-3) :199-222
[4]  
Goldstein H., 1950, Classical Mechanics
[5]  
Grunbaum B., 1963, P S PURE MATH, VVII, P233, DOI 10.1090/pspum/007/0156259
[6]   Similarity and symmetry measures for convex shapes using Minkowski addition [J].
Heijmans, HJAM ;
Tuzikov, AV .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (09) :980-993
[7]  
Horn B., 1986, Robot Vision
[8]  
Jiang X, 1996, VISUAL COMPUT, V12, P193
[9]   SYMMETRY IDENTIFICATION OF A 3-D OBJECT REPRESENTED BY OCTREE [J].
MINOVIC, P ;
ISHIKAWA, S ;
KATO, K .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1993, 15 (05) :507-513
[10]  
Schneider R., 1993, Convex Bodies: the Brunn-Minkowski Theory. Encyclopedia of Mathematics and its Applications