Length scales in solutions of the complex Ginzburg-Landau equation

被引:30
作者
Bartuccelli, MV
Gibbon, JD
Oliver, M
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND
[2] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
来源
PHYSICA D | 1996年 / 89卷 / 3-4期
关键词
D O I
10.1016/0167-2789(95)00275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalise and in certain cases improve on previous a priori estimates of Sobolev norms of solutions to the generalised complex Ginzburg-Landau equation. A set of dynamic length scales based on ratios of these norms is defined. We are able to derive lower bounds for time averages and long-time limits of these length scales. The bounds scale like the inverses of our L(infinity) bounds.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 30 条
[11]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[12]   WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION [J].
DOERING, CR ;
GIBBON, JD ;
LEVERMORE, CD .
PHYSICA D, 1994, 71 (03) :285-318
[13]  
DOERING CR, 1995, APPLIED ANAL NAVIER
[14]   A PREDICTION OF THE MULTIFRACTAL MODEL - THE INTERMEDIATE DISSIPATION RANGE [J].
FRISCH, U ;
VERGASSOLA, M .
EUROPHYSICS LETTERS, 1991, 14 (05) :439-444
[15]   TURBULENCE - CHALLENGES FOR THEORY AND EXPERIMENT [J].
FRISCH, U ;
ORSZAG, SA .
PHYSICS TODAY, 1990, 43 (01) :24-32
[16]  
GINIBRE J, 1993, COMMUNICATION
[17]   THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION IN THE LOW DISSIPATION LIMIT [J].
GOLDMAN, D ;
SIROVICH, L .
NONLINEARITY, 1994, 7 (02) :417-439
[18]  
GOLDMAN D, 1993, THESIS BROWN U PROVI
[19]  
GOLDMAN D, 1993, CFM9313 BROWN U REP
[20]   STABILITY-CRITERION FOR ENVELOPE EQUATIONS [J].
LANGE, CG ;
NEWELL, AC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 27 (03) :441-456