Length scales in solutions of the complex Ginzburg-Landau equation

被引:30
作者
Bartuccelli, MV
Gibbon, JD
Oliver, M
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND
[2] UNIV ARIZONA,DEPT MATH,TUCSON,AZ 85721
来源
PHYSICA D | 1996年 / 89卷 / 3-4期
关键词
D O I
10.1016/0167-2789(95)00275-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalise and in certain cases improve on previous a priori estimates of Sobolev norms of solutions to the generalised complex Ginzburg-Landau equation. A set of dynamic length scales based on ratios of these norms is defined. We are able to derive lower bounds for time averages and long-time limits of these length scales. The bounds scale like the inverses of our L(infinity) bounds.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
[Anonymous], 1941, DOKL AKAD NAUK+, DOI DOI 10.1098/RSPA.1991.0075
[3]   ON THE POSSIBILITY OF SOFT AND HARD TURBULENCE IN THE COMPLEX GINZBURG-LANDAU EQUATION [J].
BARTUCCELLI, M ;
CONSTANTIN, P ;
DOERING, CR ;
GIBBON, JD ;
GISSELFALT, M .
PHYSICA D, 1990, 44 (03) :421-444
[4]  
BARTUCCELLI M, 1994, AUG P INT C COMP PHY, P197
[5]   LENGTH SCALES IN SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
BARTUCCELLI, MV ;
DOERING, CR ;
GIBBON, JD ;
MALHAM, SJA .
NONLINEARITY, 1993, 6 (04) :549-568
[6]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[7]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[8]  
Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001
[9]  
CONSTANTIN P, 1985, MEMOIRS AMS
[10]  
CONSTANTIN P, 1988, PHYSICA D, V44, P284