Analyticity of solutions to nonlinear parabolic equations on manifolds and an application to stokes flow

被引:14
作者
Escher, J
Prokert, G
机构
[1] Leibniz Univ Hannover, Inst Appl Math, D-30167 Hannover, Germany
[2] Tech Univ Eindhoven, Fac Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
nonlinear parabolic equation; maximal regularity; Stokes flow; surface tension;
D O I
10.1007/s00021-005-0175-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a general regularity result for fully nonlinear, possibly nonlocal parabolic Cauchy problems under the assumption of maximal regularity for the linearized problem. We apply this result to show joint spatial and temporal analyticity of the moving boundary in the problem of Stokes flow driven by surface tension.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 25 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[3]   PARABOLIC EQUATIONS FOR CURVES ON SURFACES .1. CURVES WITH P-INTEGRABLE CURVATURE [J].
ANGENENT, S .
ANNALS OF MATHEMATICS, 1990, 132 (03) :451-483
[4]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[5]  
[Anonymous], EUR J APPL MATH
[6]  
ANTANOVSKII LK, 1992, EUR J MECH B-FLUID, V11, P741
[7]  
ANTANOVSKII LK, 1993, P C NAV STOK EQ, V2, P1
[8]  
BAILLON JB, 1980, CR ACAD SCI A MATH, V290, P757
[9]  
Da Prato G., 1979, Ann. Mat. Pura Appl., V120, P329
[10]  
Es her J., 1995, Nonlinear Di~erential Equations and Appli ations NoDEA, V2, P463, DOI [10.1007/BF01210620, DOI 10.1007/BF01210620]