Exponential speed of mixing for skew-products with singularities

被引:4
作者
Markarian, R. [1 ]
Pacifico, M. J. [2 ]
Vieitez, J. L. [3 ]
机构
[1] Univ Republica, Inst Matemat & Estadist IMERL, Fac Ingn, Montevideo 11300, Uruguay
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, RJ, Brazil
[3] Univ Republ, Salto 50000, Uruguay
关键词
DECAY;
D O I
10.1088/0951-7715/26/1/269
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : [0, 1]\{1/2} x [0, 1] ->[0, 1] x [0, 1] be the C-infinity endomorphism given by f (x, y) = (2x - left perpendicular2xright perpendicular, y + c/vertical bar x - 1/2 vertical bar - left perpendiculary + c/vertical bar x - 1/2 vertical bar right perpendicular), c is an element of IR+. We prove that f is topologically mixing and if c > 1/4 then f is mixing with respect to the Lebesgue measure. Furthermore the speed of mixing is exponential. This skew-product can be seen as a toy model related to Lorenz-like attractors.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 2006, Chaotic Billiards
[2]  
[Anonymous], PUBL MATH I HAUTES E
[3]  
Araujo V, 2010, ERGEB MATH GRENZGEB, V53, P1, DOI 10.1007/978-3-642-11414-4
[4]  
Benedicks M, 2000, ASTERISQUE, P13
[5]   ERGODIC PROPERTIES OF NOWHERE DISPERSING BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 65 (03) :295-312
[6]  
Chernov N, 2000, ENCYL MATH SCI, V101, P89
[7]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[8]  
2
[9]   Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers [J].
Morales, CA ;
Pacifico, MJ ;
Pujals, ER .
ANNALS OF MATHEMATICS, 2004, 160 (02) :375-432
[10]  
Pesin Y B., 1977, Russian Mathematical Surveys, V32, P55, DOI [10.1070/RM1977v032n04ABEH001639, DOI 10.1070/RM1977V032N04ABEH001639]