Topology optimization methods with gradient-free perimeter approximation

被引:14
作者
Amstutz, Samuel [1 ]
Van Goethem, Nicolas [2 ]
机构
[1] Fac Sci, Lab Math Avignon, F-84000 Avignon, France
[2] Univ Lisbon, Fac Ciencias, Dept Matemat, Ctr Matemat & Aplicacoes Fundamentais, P-1649003 Lisbon, Portugal
关键词
Topology optimization; perimeter; Gamma-convergence; homogenization; PHASE-TRANSITIONS; SHAPE OPTIMIZATION;
D O I
10.4171/IFB/286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a family of smooth perimeter approximating functionals designed to be incorporated within topology optimization algorithms. The required mathematical properties, namely the Gamma-convergence and the compactness of sequences of minimizers, are first established. Then we propose several methods for the solution of topology optimization problems with perimeter penalization showing different features. We conclude by some numerical illustrations in the contexts of least square problems and compliance minimization.
引用
收藏
页码:401 / 430
页数:30
相关论文
共 34 条
[1]   A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies [J].
Alberti, G ;
Bellettini, G .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1998, 9 :261-284
[2]   Shape optimization by the homogenization method [J].
Allaire, G ;
Bonnetier, E ;
Francfort, G ;
Jouve, F .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :27-68
[3]  
Allaire G., 2002, Applied Mathematical Sciences, V146
[4]  
Allaire G, 2007, MATH APPL-BERLIN, V58, P1
[5]   Damage and fracture evolution in brittle materials by shape optimization methods [J].
Allaire, Gregoire ;
Jouve, Francois ;
Van Goethem, Nicolas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (12) :5010-5044
[6]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[7]   AN OPTIMAL-DESIGN PROBLEM WITH PERIMETER PENALIZATION [J].
AMBROSIO, L ;
BUTTAZZO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (01) :55-69
[8]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[9]  
AMSTUTZ S., 2012, MINIMAL PARTIT UNPUB
[10]  
AMSTUTZ S., 2010, HAL00542854