Hardy spaces with variable exponents on RD-spaces and applications

被引:61
作者
Zhuo, Ciqiang [1 ]
Sawano, Yoshihiro [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
关键词
RD-space; Hardy space; variable exponent; maximal function; atom; Littlewood-Paley function; dual space; TRIEBEL-LIZORKIN SPACES; FRACTIONAL INTEGRAL-OPERATORS; RIESZ-POTENTIALS; LEBESGUE SPACES; MORREY SPACES; BESOV-SPACES; SOBOLEV EMBEDDINGS; MAXIMAL OPERATOR; WEAK SOLUTIONS; BOUNDEDNESS;
D O I
10.4064/dm744-9-2015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors introduce Hardy spaces with variable exponents, H*(,p(.)) (chi), on RD-spaces with infinite measures via the grand maximal function. Then the authors characterize these spaces by means of the non-tangential maximal function or the dyadic maximal function. Characterizations in terms of atoms or Littlewood-Paley functions are also established. As applications, the authors prove an Olsen inequality for fractional integral operators and the boundedness of singular integral operators and quasi-Banach valued sublinear operators on these spaces. Finally, a duality theory of these spaces is developed.
引用
收藏
页码:1 / 74
页数:74
相关论文
共 90 条
[1]  
Adamowicz T, 2015, MATH SCAND, V116, P5
[2]   Besov spaces with variable smoothness and integrability [J].
Almeida, Alexandre ;
Hasto, Peter .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) :1628-1655
[3]  
[Anonymous], 2004, Real Anal. Exchange
[4]  
[Anonymous], 1971, Lecture Notes in Mathematics
[5]  
[Anonymous], 2014, Sci. Math. Jpn.
[6]  
[Anonymous], 1982, Mathematical Notes, DOI DOI 10.1515/9780691222455
[7]  
[Anonymous], 1950, Modulared Semi-Ordered Linear Spaces
[8]  
[Anonymous], 2007, P A RAZMADZE MATH I
[9]  
[Anonymous], 2008, FRACT CALC APPL ANAL
[10]  
Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733