Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction

被引:28
|
作者
Li, Jie [1 ]
Ziehm, Will [1 ]
Kimball, Jonathan [2 ]
Landers, Robert [1 ]
Park, Jonghyun [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65401 USA
[2] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
Machine learning; Random signal; Battery soc; Dynamic current; Battery modeling; Estimation; XGBoost; RANDOM FOREST REGRESSION; MODEL;
D O I
10.1016/j.egyai.2021.100094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, which is not necessarily the same format as conventional predefined battery testing protocols, such as constant current cycling, Highway Fuel Economy Cycle, and Urban Dynamometer Driving Schedule. The randomly generated data can be successfully applied to various dynamic battery operating conditions. For the ML algorithm, XGBoost is used, along with Random Forest, Artificial Neural Network, and a reduced-order physical battery model for comparison. The XGBoost method with the optimal training data set shows excellent performance for SOC prediction with the fastest learning time within 1 s, a short running time of 0.03 s, and accurate results with a 0.358% Mean Absolute Percentage Error, which is outstanding compared to other Data-Driven approaches and the physics-based model.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] A hybrid data-driven approach for state of health estimation in lithium-ion batteries
    Ding, Can
    Guo, Qing
    Zhang, Lulu
    Wang, Tao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 67 - 83
  • [22] Data-driven autoencoder neural network for onboard BMS Lithium-ion battery degradation prediction
    Sudarshan, Meghana
    Serov, Alexey
    Jones, Casey
    Ayalasomayajula, Surya Mitra
    Garcia, R. Edwin
    Tomar, Vikas
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [23] Cycle life prediction of lithium-ion batteries based on data-driven methods
    Su, Laisuo
    Wu, Mengchen
    Li, Zhe
    Zhang, Jianbo
    ETRANSPORTATION, 2021, 10
  • [24] Toward Data-Driven Applications in Lithium-Ion Battery Cell Manufacturing
    Turetskyy, Artem
    Thiede, Sebastian
    Thomitzek, Matthias
    von Drachenfels, Nicolas
    Pape, Till
    Herrmann, Christoph
    ENERGY TECHNOLOGY, 2020, 8 (02)
  • [25] Prediction of Lithium-ion Battery Remaining Useful Life Based on Hybrid Data-Driven Method with Optimized Parameter
    Cai, Yishan
    Yang, Lin
    Deng, Zhongwei
    Zhao, Xiaowei
    Deng, Hao
    PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 1 - 6
  • [26] Dual particle swarm optimization based data-driven state of health estimation method for lithium-ion battery
    Liu, Xingtao
    Liu, Xiaojian
    Fang, Leichao
    Wu, Muyao
    Wu, Ji
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [27] State-of-Charge Estimation of Lithium-Ion Batteries Using Machine Learning Based on Augmented Data
    Pohlmann, Sebastian
    Karnehm, Dominic
    Mashayekh, Ali
    Kuder, Manuel
    Gieraths, Antje
    Weyh, Thomas
    2022 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST, 2022,
  • [28] Battery state-of-charge estimation using data-driven Gaussian process Kalman filters
    Lee, Kwang-Jae
    Lee, Won-Hyung
    Kim, Kwang-Ki K.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [29] Data-driven hybrid remaining useful life estimation approach for spacecraft lithium-ion battery
    Song, Yuchen
    Liu, Datong
    Yang, Chen
    Peng, Yu
    MICROELECTRONICS RELIABILITY, 2017, 75 : 142 - 153
  • [30] Lithium-ion battery state-of-charge estimation strategy for industrial applications
    Chen, Zilong
    Liao, Wenjun
    Li, Pingfei
    Tan, Jinhui
    Chen, Yuping
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-ENERGY, 2024, 177 (01) : 14 - 21