Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction

被引:28
|
作者
Li, Jie [1 ]
Ziehm, Will [1 ]
Kimball, Jonathan [2 ]
Landers, Robert [1 ]
Park, Jonghyun [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65401 USA
[2] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65401 USA
基金
美国国家科学基金会;
关键词
Machine learning; Random signal; Battery soc; Dynamic current; Battery modeling; Estimation; XGBoost; RANDOM FOREST REGRESSION; MODEL;
D O I
10.1016/j.egyai.2021.100094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-Driven approaches for State of Charge (SOC) prediction have been developed considerably in recent years. However, determining the appropriate training dataset is still a challenge for model development and validation due to the considerably varieties of lithium-ion batteries in terms of material, types of battery cells, and operation conditions. This work focuses on optimization of the training data set by using simple measurable data sets, which is important for the accuracy of predictions, reduction of training time, and application to online estimation. It is found that a randomly generated data set can be effectively used for the training data set, which is not necessarily the same format as conventional predefined battery testing protocols, such as constant current cycling, Highway Fuel Economy Cycle, and Urban Dynamometer Driving Schedule. The randomly generated data can be successfully applied to various dynamic battery operating conditions. For the ML algorithm, XGBoost is used, along with Random Forest, Artificial Neural Network, and a reduced-order physical battery model for comparison. The XGBoost method with the optimal training data set shows excellent performance for SOC prediction with the fastest learning time within 1 s, a short running time of 0.03 s, and accurate results with a 0.358% Mean Absolute Percentage Error, which is outstanding compared to other Data-Driven approaches and the physics-based model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Comparative Study-Based Data-Driven Models for Lithium-Ion Battery State-of-Charge Estimation
    Hussein, Hossam M.
    Esoofally, Mustafa
    Donekal, Abhishek
    Rafin, S. M. Sajjad Hossain
    Mohammed, Osama
    BATTERIES-BASEL, 2024, 10 (03):
  • [2] Data-Driven Discovery of Lithium-Ion Battery State of Charge Dynamics
    Rodriguez, Renato
    Ahmadzadeh, Omidreza
    Wang, Yan
    Soudbakhsh, Damoon
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [3] A Hybrid Data-Driven Method for State-of-Charge Estimation of Lithium-Ion Batteries
    Yan, Xiaodong
    Zhou, Gongbo
    Wang, Wei
    Zhou, Ping
    He, Zhenzhi
    IEEE SENSORS JOURNAL, 2022, 22 (16) : 16263 - 16275
  • [4] Data-Driven Estimation of Remaining Useful Lifetime and State of Charge for Lithium-Ion Battery
    Du, Zhekai
    Zuo, Lin
    Li, Jingjing
    Liu, Yu
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 356 - 367
  • [5] The state-of-charge predication of lithium-ion battery energy storage system using data-driven machine learning
    Li, Jiarui
    Huang, Xiaofan
    Tang, Xiaoping
    Guo, Jinhua
    Shen, Qiying
    Chai, Yuan
    Lu, Wu
    Wang, Tong
    Liu, Yongsheng
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 34
  • [6] State of Charge Estimation by Joint Approach With Model-Based and Data-Driven Algorithm for Lithium-Ion Battery
    Shi, Qin
    Jiang, Zhengxin
    Wang, Zhi
    Shao, Xingguo
    He, Lin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Data-Driven Prediction Methods for Lithium-Ion Battery State of Health Based on Elbow Rule
    Zhang, Liu
    Xing, Bo
    Gao, Yanbing
    Yao, Lei
    Zhao, Dengfeng
    Ding, Jinquan
    Li, Yanyan
    IEEE ACCESS, 2024, 12 : 183581 - 183595
  • [8] Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression
    Deng, Zhongwei
    Hu, Xiaosong
    Lin, Xianke
    Che, Yunhong
    Xu, Le
    Guo, Wenchao
    ENERGY, 2020, 205
  • [9] Data-driven state-of-health estimation for lithium-ion battery based on aging features
    Li, Xining
    Ju, Lingling
    Geng, Guangchao
    Jiang, Quanyuan
    ENERGY, 2023, 274
  • [10] Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    FORECASTING, 2023, 5 (03): : 576 - 599