Power series expansions for spheroidal wave functions with small arguments

被引:1
作者
Kokkorakis, GC [1 ]
Roumeliotis, JA [1 ]
机构
[1] Natl Tech Univ Athens, Dept Elect & Comp Engn, Athens 15773, Greece
关键词
D O I
10.1016/S0377-0427(01)00387-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Power series expansions for the angular spheroidal wave functions of the first kind S-mn(c, eta), with small arguments c, are derived for general integer values of m and n. The various evaluated expansion coefficients can also be used in the calculation of the corresponding angular functions of the second kind, as well as for the radial functions of any kind. Only the prolate functions are considered explicitly, but corresponding formulas for the oblate ones are obtained immediately. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:95 / 127
页数:33
相关论文
共 16 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   LIGHT-SCATTERING BY A SPHEROIDAL PARTICLE [J].
ASANO, S ;
YAMAMOTO, G .
APPLIED OPTICS, 1975, 14 (01) :29-49
[3]   NOTE ON SPHEROIDAL WAVE FUNCTIONS [J].
BURKE, JE .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (04) :425-&
[5]   Variational formulation of interior cavity frequencies for spheroidal bodies [J].
Chen, PT .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (05) :2980-2988
[6]   MULTIPLE-SCATTERING OF ELECTROMAGNETIC-WAVES FROM 2 PROLATE SPHEROIDS WITH PERPENDICULAR AXES OF REVOLUTION [J].
DALMAS, J ;
DELEUIL, R .
RADIO SCIENCE, 1993, 28 (02) :105-119
[7]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC
[8]  
Jones D, 1964, THEORY ELECTROMAGNET
[9]   Electromagnetic eigenfrequencies in a spheroidal cavity (calculation by spheroidal eigenvectors) [J].
Kokkorakis, GC ;
Roumeliotis, JA .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1998, 12 (12) :1601-1624
[10]   Acoustic eigenfrequencies in a spheroidal cavity with a concentric penetrable sphere [J].
Kokkorakis, GC ;
Roumeliotis, JA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (03) :1539-1547