Fault-tolerant-prescribed hamiltonian laceability of balanced hypercubes

被引:8
作者
Yang, Yuxing [1 ,2 ]
Zhang, Lingling [1 ]
机构
[1] Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Henan Engn Lab Big Data & Stat Anal & Optimal Con, Xinxiang 453007, Henan, Peoples R China
关键词
Multiprocessor system; Interconnection network; Fault tolerance; Hamiltonian laceability; PATHS;
D O I
10.1016/j.ipl.2019.01.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a bipartite graph G with bipartition (X, Y), let F subset of E(G) be a set of faulty edges and let L be a linear forest in G - F such that vertical bar F vertical bar + vertical bar E(L)vertical bar <= k. Let u epsilon X and v epsilon Y be any two vertices such that none of the paths in L has u or v as internal vertices or both of them as end vertices. G is said to be k-fault-tolerant-prescribed hamiltonian laceable if G - F admits a hamiltonian path between u and v passing through L. Balanced hypercubes are candidate interconnection networks of multiprocessor systems. In this paper, we prove that the n-dimensional balanced hypercube is (n - 1)-fault-tolerant-prescribed hamiltonian laceable. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 11 条
[1]  
Bondy J.A., 2008, GTM
[2]   Path Embeddings with Prescribed Edge in the Balanced Hypercube Network [J].
Chen, Dan ;
Lu, Zhongzhou ;
Shen, Zebang ;
Zhang, Gaofeng ;
Chen, Chong ;
Zhou, Qingguo .
SYMMETRY-BASEL, 2017, 9 (06)
[3]   Two node-disjoint paths in balanced hypercubes [J].
Cheng, Dongqin ;
Hao, Rong-Xia ;
Feng, Yan-Quan .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :127-142
[4]   Hamiltonian paths passing through prescribed edges in balanced hypercubes [J].
Lu, Huazhong ;
Wang, Fan .
THEORETICAL COMPUTER SCIENCE, 2019, 761 :23-33
[5]   Matching preclusion for balanced hypercubes [J].
Lu, Huazhong ;
Li, Xianyue ;
Zhang, Heping .
THEORETICAL COMPUTER SCIENCE, 2012, 465 :10-20
[6]  
Simmons G.J., 1978, C NUMER, V21, P103
[7]   The balanced hypercube: A cube-based system for fault-tolerant applications [J].
Wu, J ;
Huang, K .
IEEE TRANSACTIONS ON COMPUTERS, 1997, 46 (04) :484-490
[8]   Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes [J].
Xu, Min ;
Hu, Xiao-Dong ;
Xu, Jun-Ming .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) :1393-1401
[9]   Embedding fault-free hamiltonian paths with prescribed linear forests into faulty ternary n-cubes [J].
Yang, Yuxing ;
Li, Jing ;
Wang, Shiying .
THEORETICAL COMPUTER SCIENCE, 2019, 767 :1-15
[10]   Symmetric Property and Reliability of Balanced Hypercube [J].
Zhou, Jin-Xin ;
Wu, Zhen-Lin ;
Yang, Shi-Chen ;
Yuan, Kui-Wu .
IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (03) :876-881