Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information

被引:166
作者
Chen, Gongbo [1 ]
Knibbs, Luke D. [2 ]
Zhang, Wenyi [3 ]
Li, Shanshan [1 ]
Cao, Wei [4 ]
Guo, Jianping [5 ]
Ren, Hongyan [4 ]
Wang, Boguang [6 ]
Wang, Hao [7 ]
Williams, Gail [2 ]
Hamm, N. A. S. [8 ]
Guo, Yuming [1 ]
机构
[1] Monash Univ, Sch Publ Hlth & Prevent Med, Dept Epidemiol & Prevent Med, Level 2,553 St Kilda Rd, Melbourne, Vic 3004, Australia
[2] Univ Queensland, Sch Publ Hlth, Brisbane, Qld, Australia
[3] Acad Mil Med Sci, Inst Dis Control & Prevent, Ctr Dis Surveillance & Res, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
[5] Chinese Acad Meteorol Sci, Sate Key Lab Severe Weather, Beijing, Peoples R China
[6] Jinan Univ, Inst Environm & Climate Res, Guangzhou, Guangdong, Peoples R China
[7] Hong Kong Polytech Univ, Air Qual Studies, Dept Civil & Environm Engn, Hong Kong, Hong Kong, Peoples R China
[8] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
PM1; Aerosol optical depth; Meteorology; Land use; China; AEROSOL OPTICAL DEPTH; PARTICULATE AIR-POLLUTION; USE REGRESSION-MODEL; GROUND-LEVEL PM2.5; TEMPORAL VARIATIONS; SEASONAL-VARIATIONS; HEALTH IMPACT; MODIS; CITY; AOD;
D O I
10.1016/j.envpol.2017.10.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: PM1 might be more hazardous than PM2.5 (particulate matter with an aerodynamic diameter <= 1 mu m and <= 2.5 mu m, respectively). However, studies on PM1 concentrations and its health effects are limited due to a lack of PM1 monitoring data. Objectives: To estimate spatial and temporal variations of PM1 concentrations in China during 2005-2014 using satellite remote sensing, meteorology, and land use information. Methods: Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM1 data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability. Results: The results of 10-fold cross-validation showed R-2 and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 mu g/m(3), respectively. For seasonal prediction, the R-2 and RMSE were 77% and 11.4.Lg/m(3), respectively. The predicted annual mean concentration of PM1 across "China was 26.9 mu g/m(3). The PM1 level was highest in winter while lowest in summer. Generally, the PM1 levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region. Conclusions: GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-evel PM1. Ambient PM1 reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM1. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1086 / 1094
页数:9
相关论文
共 55 条
[1]  
[Anonymous], J GEOPHYS RES ATMOS
[2]   Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method [J].
Cabada, JC ;
Pandis, SN ;
Subramanian, R ;
Robinson, AL ;
Polidori, A ;
Turpin, B .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 :140-155
[3]   Fine Particulate Matter Constituents and Cardiopulmonary Mortality in a Heavily Polluted Chinese City [J].
Cao, Junji ;
Xu, Hongmei ;
Xu, Qun ;
Chen, Bingheng ;
Kan, Haidong .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2012, 120 (03) :373-378
[4]   Air pollution in mega cities in China [J].
Chan, Chak K. ;
Yao, Xiaohong .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (01) :1-42
[5]  
Chen GB, 2017, LANCET PLANET HEALTH, V1, pE221, DOI 10.1016/s2542-5196(17)30100-6
[6]   Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data [J].
de Hoogh, Kees ;
Gulliver, John ;
van Donkelaar, Aaron ;
Martin, Randall V. ;
Marshall, Julian D. ;
Bechle, Matthew J. ;
Cesaroni, Giulia ;
Cirach Pradas, Marta ;
Dedele, Audrius ;
Eeftens, Marloes ;
Forsberg, Bertil ;
Galassi, Claudia ;
Heinrich, Joachim ;
Hoffmann, Barbara ;
Jacquemin, Benedicte ;
Katsouyanni, Klea ;
Korek, Michal ;
Kunzli, Nino ;
Lindley, Sarah J. ;
Lepeule, Johanna ;
Meleux, Frederik ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Nystad, Wenche ;
Raaschou-Nielsen, Ole ;
Peters, Annette ;
Peuch, Vincent-Henri ;
Rouil, Laurence ;
Udvardy, Orsolya ;
Slama, Remy ;
Stempfelet, Morgane ;
Stephanou, Euripides G. ;
Tsai, Ming Y. ;
Yli-Tuomi, Tarja ;
Weinmayr, Gudrun ;
Brunekreef, Bert ;
Vienneau, Danielle ;
Hoek, Gerard .
ENVIRONMENTAL RESEARCH, 2016, 151 :1-10
[7]   Multi-angle Imaging SpectroRadiometer (MISR) - Instrument description and experiment overview [J].
Diner, DJ ;
Beckert, JC ;
Reilly, TH ;
Bruegge, CJ ;
Conel, JE ;
Kahn, RA ;
Martonchik, JV ;
Ackerman, TP ;
Davies, R ;
Gerstl, SAW ;
Gordon, HR ;
Muller, JP ;
Myneni, RB ;
Sellers, PJ ;
Pinty, B ;
Verstraete, MM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1072-1087
[8]   Cardiovascular risks from fine particulate air pollution [J].
Dockery, Douglas W. ;
Stone, Peter H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (05) :511-513
[9]   Satellite-based ground PM2.5 estimation using timely structure adaptive modeling [J].
Fang, Xin ;
Zou, Bin ;
Liu, Xiaoping ;
Sternberg, Troy ;
Zhai, Liang .
REMOTE SENSING OF ENVIRONMENT, 2016, 186 :152-163
[10]   MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets [J].
Friedl, Mark A. ;
Sulla-Menashe, Damien ;
Tan, Bin ;
Schneider, Annemarie ;
Ramankutty, Navin ;
Sibley, Adam ;
Huang, Xiaoman .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (01) :168-182