MiniNet: An Efficient Semantic Segmentation ConvNet for Real-Time Robotic Applications

被引:34
作者
Alonso, Inigo [1 ]
Riazuelo, Luis [1 ]
Murillo, Ana C. [1 ]
机构
[1] Univ Zaragoza, Dept Informat & Ingn Sistemas, Zaragoza 50009, Spain
关键词
Convolution; Computer architecture; Semantics; Computational modeling; Standards; Kernel; Robots; Deep learning; efficient models; scene understanding; semantic segmentation;
D O I
10.1109/TRO.2020.2974099
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Efficient models for semantic segmentation, in terms of memory, speed, and computation, could boost many robotic applications with strong computational and temporal restrictions. This article presents a detailed analysis of different techniques for efficient semantic segmentation. Following this analysis, we have developed a novel architecture, MiniNet-v2, an enhanced version of MiniNet. MiniNet-v2 is built considering the best option depending on CPU or GPU availability. It reaches comparable accuracy to the state-of-the-art models but uses less memory and computational resources. We validate and analyze the details of our architecture through a comprehensive set of experiments on public benchmarks (Cityscapes, Camvid, and COCO-Text datasets), showing its benefits over relevant prior work. Our experiments include a sample application where these models can boost existing robotic applications.
引用
收藏
页码:1340 / 1347
页数:8
相关论文
共 33 条
  • [1] Alonso I, 2019, IEEE INT CONF ROBOT, P4717, DOI [10.1109/ICRA.2019.8793923, 10.1109/icra.2019.8793923]
  • [2] [Anonymous], 2016, arXiv preprint arXiv:1606.05426
  • [3] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [4] Analysis of efficient CNN design techniques for semantic segmentation
    Briot, Alexandre
    Viswanath, Prashanth
    Yogamani, Senthil
    [J]. PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 776 - 785
  • [5] Semantic object classes in video: A high-definition ground truth database
    Brostow, Gabriel J.
    Fauqueur, Julien
    Cipolla, Roberto
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (02) : 88 - 97
  • [6] Chen Liang-Chieh, 2018, ECCV, P801, DOI [DOI 10.1007/978-3-030-01234-249, DOI 10.1007/978-3-030-01234-2_49]
  • [7] Cordts M., 2016, P COMP VIS PATT REC
  • [8] Courbariaux M., 2015, ADV NEURAL INFORM PR, P3105
  • [9] He K., 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
  • [10] Hinton Geoffrey, 2015, ARXIV