Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains

被引:12
作者
Iaia, Joseph A. [1 ]
机构
[1] Univ North Texas, Dept Math, POB 311430, Denton, TX 76203 USA
关键词
Exterior domain; Superlinear; Radial; SEMIPOSITONE PROBLEMS;
D O I
10.1016/j.jmaa.2016.08.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of an infinite number of radial solutions of Delta u + K(r) f(u) = 0 on the exterior of the ball of radius R centered at the origin in R-N such that lim(r ->infinity) u(r) = 0 with prescribed number of zeros where f : R -> R is odd and there exists a beta > 0 with f < 0 on (0, beta), f > 0 on (beta, infinity) with f superlinear for large u, and K(r) similar to r(-alpha) with 0 < alpha < N. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
[41]   Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains [J].
Shen, Yalin .
BOUNDARY VALUE PROBLEMS, 2025, 2025 (01)
[42]   Global existence for semilinear wave equations exterior to nontrapping obstacles [J].
Metcalfe, JL .
HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (01) :259-281
[43]   Neumann eigenvalue problems on the exterior domains [J].
Anoop, T., V ;
Biswas, Nirjan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :339-351
[44]   Strongly singular problems in exterior domains [J].
Chhetri, Maya ;
Faraci, Francesca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 313 :285-313
[45]   Existence and nonexistence of global positive solutions for the evolution P-Laplacian equations in exterior domains [J].
Zeng, Xianzhong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :901-916
[46]   LOW MACH NUMBER LIMIT ON EXTERIOR DOMAINS [J].
Donatella Donatelli ;
Pierangelo Marcati .
Acta Mathematica Scientia, 2012, 32 (01) :164-176
[47]   LOW MACH NUMBER LIMIT ON EXTERIOR DOMAINS [J].
Donatelli, Donatella ;
Marcati, Pierangelo .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) :164-176
[48]   Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain [J].
Ikehata, Ryo ;
Inoue, Yu-ki .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :154-169
[49]   Existence and Nonexistence of Solutions to p-Laplacian Problems on Unbounded Domains [J].
Jeong, Jeongmi ;
Kim, Chan-Gyun ;
Lee, Eun Kyoung .
MATHEMATICS, 2019, 7 (05)
[50]   Global existence of solutions to a weakly coupled critical parabolic system in two-dimensional exterior domains [J].
Sobajima, Motohiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)