Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains

被引:12
作者
Iaia, Joseph A. [1 ]
机构
[1] Univ North Texas, Dept Math, POB 311430, Denton, TX 76203 USA
关键词
Exterior domain; Superlinear; Radial; SEMIPOSITONE PROBLEMS;
D O I
10.1016/j.jmaa.2016.08.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of an infinite number of radial solutions of Delta u + K(r) f(u) = 0 on the exterior of the ball of radius R centered at the origin in R-N such that lim(r ->infinity) u(r) = 0 with prescribed number of zeros where f : R -> R is odd and there exists a beta > 0 with f < 0 on (0, beta), f > 0 on (beta, infinity) with f superlinear for large u, and K(r) similar to r(-alpha) with 0 < alpha < N. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条
[31]   Existence of two infinite families of solutions to a singular superlinear equation on exterior domains [J].
Aryal, Narayan ;
Iaia, Joseph .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (68) :1-14
[32]   Semilinear mixed problems in exterior domains for σ-evolution equations with friction and coefficients depending on spatial variables [J].
Trieu Duong Pham ;
Reissig, Michael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
[33]   Sign-Changing Radial Solutions for a Semilinear Problem on Exterior Domains With Nonlinear Boundary Conditions [J].
Azeroual, Boubker ;
Zertiti, Abderrahim .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
[34]   A Semilinear Pseudo-Parabolic Equation in Exterior Domains [J].
Yang CAO ;
Jingxue YIN .
Journal of Mathematical Research with Applications, 2019, 39 (06) :607-618
[35]   Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball [J].
Dhanya, R. ;
Morris, Q. ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) :1533-1548
[36]   Positive solutions of Kirchhoff type problems with critical growth on exterior domains [J].
Dai, Ting-Ting ;
Ou, Zeng-Qi ;
Tang, Chun-Lei ;
Lv, Ying .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)
[37]   Analysis of positive solutions for classes of quasilinear singular problems on exterior domains [J].
Chhetri, Maya ;
Drabek, Pavel ;
Shivaji, Ratnasingham .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (04) :447-459
[38]   The continuous dependence on parameters of solutions for a class of elliptic problems on exterior domains [J].
Djebali, Smail ;
Orpel, Aleksandra .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (03) :660-672
[39]   Existence for bounded positive solutions of Schrodinger equations in two-dimensional exterior domains [J].
Deng, Jiqin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :475-486
[40]   Existence, uniqueness, and attainability of periodic solutions of the Navier-Stokes equations in exterior domains [J].
P. Maremonti ;
M. Padula .
Journal of Mathematical Sciences, 1999, 93 (5) :719-746