Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains

被引:12
作者
Iaia, Joseph A. [1 ]
机构
[1] Univ North Texas, Dept Math, POB 311430, Denton, TX 76203 USA
关键词
Exterior domain; Superlinear; Radial; SEMIPOSITONE PROBLEMS;
D O I
10.1016/j.jmaa.2016.08.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of an infinite number of radial solutions of Delta u + K(r) f(u) = 0 on the exterior of the ball of radius R centered at the origin in R-N such that lim(r ->infinity) u(r) = 0 with prescribed number of zeros where f : R -> R is odd and there exists a beta > 0 with f < 0 on (0, beta), f > 0 on (beta, infinity) with f superlinear for large u, and K(r) similar to r(-alpha) with 0 < alpha < N. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 11 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
Berger M.S., 1977, Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in Mathematical Analysis, VVolume 74
[3]  
Birkhoff G., 1962, ORDINARY DIFFERENTIA
[4]   Uniqueness of nonnegative solutions for semipositone problems on exterior domains [J].
Castro, Alfonso ;
Sankar, Lakshmi ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :432-437
[5]  
Iaia J., 2016, J PARTIAL UNPUB JAN
[6]  
Iaia J., 2015, ELECT J QUALITATIVE, V82, P1
[7]   ON THE INFINITELY MANY SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION [J].
JONES, C ;
KUPPER, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (04) :803-835
[8]  
Lee EK, 2011, DIFFER INTEGRAL EQU, V24, P861
[9]   RADIAL SOLUTIONS OF DELTA-U+F(U)=0 WITH PRESCRIBED NUMBERS OF ZEROS [J].
MCLEOD, K ;
TROY, WC ;
WEISSLER, FB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) :368-378
[10]   Semipositone problems with falling zeros on exterior domains [J].
Sankar, Lakshmi ;
Sasi, Sarath ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :146-153