Existence of solutions for semilinear problems with prescribed number of zeros on exterior domains

被引:12
|
作者
Iaia, Joseph A. [1 ]
机构
[1] Univ North Texas, Dept Math, POB 311430, Denton, TX 76203 USA
关键词
Exterior domain; Superlinear; Radial; SEMIPOSITONE PROBLEMS;
D O I
10.1016/j.jmaa.2016.08.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of an infinite number of radial solutions of Delta u + K(r) f(u) = 0 on the exterior of the ball of radius R centered at the origin in R-N such that lim(r ->infinity) u(r) = 0 with prescribed number of zeros where f : R -> R is odd and there exists a beta > 0 with f < 0 on (0, beta), f > 0 on (beta, infinity) with f superlinear for large u, and K(r) similar to r(-alpha) with 0 < alpha < N. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 50 条