Robust regression analysis for a censored response and functional regressors

被引:7
作者
Hennani, L. Ait [1 ]
Lemdani, M. [1 ]
Said, E. Ould [2 ]
机构
[1] Univ Lille, Lab Biomath, F-59006 Lille, France
[2] ULCO, LMPA, IUT Calais, Calais, France
关键词
Asymptotic normality; censored data; functional random variable; kernel estimator; robust estimation; NONPARAMETRIC REGRESSION; ASYMPTOTIC-DISTRIBUTION; ESTIMATORS; PREDICTION;
D O I
10.1080/10485252.2018.1546386
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let be an independent and identically distributed (iid) sequence of interest random variables (rv) distributed as T. In censorship models, T is subject to random censoring by another rv C. Based on the so-called synthetic data, we define an M-estimator for the regression function of T given a functional covariate . Under standard assumptions on the kernel, bandwidth and small ball probabilities, we establish its strong consistency with rate and asymptotic normality. The asymptotic variance is given explicitly. Confidence bands are given and special cases are studied to show the generality of our work. Finally simulations are drawn to illustrate both quality of fit and robustness.
引用
收藏
页码:221 / 243
页数:23
相关论文
共 50 条
  • [21] Nonparametric M-estimation for right censored regression model with stationary ergodic data
    Chaouch, Mohamed
    Laib, Naamane
    Said, Elias Ould
    STATISTICAL METHODOLOGY, 2016, 33 : 234 - 255
  • [22] Local Linear Estimation of the Trimmed Regression for Censored Data
    Bakhtaoui, Ataouia
    Limam-Belarbi, Faiza
    FILOMAT, 2022, 36 (14) : 4919 - 4933
  • [23] ASYMPTOTIC NORMALITY SINGLE FUNCTIONAL INDEX QUANTILE REGRESSION UNDER RANDOMLY CENSORED DATA
    Dib, Abdessamad
    Hamri, Mohamed Mehdi
    Rabhi, Abbes
    JOURNAL OF SCIENCE AND ARTS, 2022, (04) : 845 - 864
  • [24] Nonparametric estimation of the relative error in functional regression and censored data
    Mechab, Boubaker
    Hamidi, Nesrine
    Benaissa, Samir
    CHILEAN JOURNAL OF STATISTICS, 2019, 10 (02): : 177 - 195
  • [25] Asymptotic normality of local linear functional regression estimator based upon censored data
    Leulmi, Sarra
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [26] Estimation and bootstrap with censored data in fixed design nonparametric regression
    VanKeilegom, I
    Veraverbeke, N
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1997, 49 (03) : 467 - 491
  • [27] Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression
    Ingrid Van Keilegom
    Noël Veraverbeke
    Annals of the Institute of Statistical Mathematics, 1997, 49 : 467 - 491
  • [28] Local linear regression in proportional hazards model with censored data
    Zhao, Xiaobing
    Zhou, Xian
    Wu, Xianyi
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (13-16) : 2761 - 2776
  • [29] Robust and adaptive functional logistic regression
    Kalogridis, Ioannis
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 192
  • [30] Robust Functional Principal Component Analysis Based on a New Regression Framework
    Shi, Haolun
    Cao, Jiguo
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (03) : 523 - 543