Surfaces of general type with geometric genus zero: a survey

被引:46
作者
Bauer, Ingrid [1 ]
Catanese, Fabrizio [1 ]
Pignatelli, Roberto [2 ]
机构
[1] Univ Bayreuth, Math Inst, Lehrstuhl Math 8, Univ Str 30, D-95447 Bayreuth, Germany
[2] Univ Trent, Dipartimento Matemat Della, I-38123 Trento, Italy
来源
COMPLEX AND DIFFERENTIAL GEOMETRY | 2011年 / 8卷
关键词
Surfaces of general type with genus 0; Godeaux surfaces; Campedelli surfaces; Burniat surfaces; Bloch conjecture; Actions of finite groups; SIMPLY CONNECTED SURFACE; NUMERICAL CAMPEDELLI SURFACES; STRONG RIGIDITY THEOREM; FUNDAMENTAL GROUP; RATIONAL EQUIVALENCE; ALGEBRAIC-SURFACES; BICANONICAL MAP; MODULI SPACES; P(G)=0; DEFORMATION;
D O I
10.1007/978-3-642-20300-8_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the last years there have been several new constructions of surfaces of general type with p(g) = 0, and important progress on their classification. The present paper presents the status of the art on surfaces of general type with p(g) = 0, and gives an updated list of the existing surfaces, in the case where K-2 = 1,..., 7. It also focuses on certain important aspects of this classification.
引用
收藏
页码:1 / +
页数:8
相关论文
共 138 条
[1]  
[Anonymous], 1983, Progr. Math
[2]  
[Anonymous], 2004, ERGEBNISSE MATH IHRE
[3]  
[Anonymous], 1992, ANN SCUOLA NORM-SCI
[4]  
[Anonymous], 1966, ANN MAT PUR APPL, DOI 10.1007/BF02413731
[5]  
ARMSTRON.MA, 1965, PROC CAMB PHILOS S-M, V61, P639
[6]  
ARMSTRONG MA, 1968, PROC CAMB PHILOS S-M, V64, P299
[7]   A SIMPLY CONNECTED SURFACE OF GENERAL TYPE WITH PG=0 [J].
BARLOW, R .
INVENTIONES MATHEMATICAE, 1985, 79 (02) :293-301
[8]   RATIONAL EQUIVALENCE OF ZERO CYCLES FOR SOME MORE SURFACES WITH PG=0 [J].
BARLOW, R .
INVENTIONES MATHEMATICAE, 1985, 79 (02) :303-308
[9]   SOME NEW SURFACES WITH PG=O [J].
BARLOW, R .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (04) :889-904
[10]  
Barth W, 1984, ERGEBNISSE MATH IHRE