Scaling limits of k-ary growing trees

被引:10
作者
Haas, Benedicte [1 ,2 ]
Stephenson, Robin [3 ]
机构
[1] Univ Paris 09, F-75005 Paris, France
[2] Ecole Normale Super, F-75005 Paris, France
[3] Univ Paris 09, F-75775 Paris 16, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 04期
关键词
Random growing trees; Scaling limits; Self-similar fragmentation trees; Gromov-Hausdorff-Prokhorov topology; MARKOV BRANCHING TREES; FRAGMENTATIONS;
D O I
10.1214/14-AIHP622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For each integer k >= 2, we introduce a sequence of k-ary discrete trees constructed recursively by choosing at each step an edge uniformly among the present edges and grafting on "its middle" k - 1 new edges. When k = 2, this corresponds to a well-known algorithm which was first introduced by Remy. Our main result concerns the asymptotic behavior of these trees as the number of steps n of the algorithm becomes large: for all k, the sequence of k-ary trees grows at speed n(1/k) towards a k-ary random real tree that belongs to the family of self-similar fragmentation trees. This convergence is proved with respect to the Gromov-Hausdorff-Prokhorov topology. We also study embeddings of the limiting trees when k varies.
引用
收藏
页码:1314 / 1341
页数:28
相关论文
共 32 条
[1]   A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces [J].
Abraham, Romain ;
Delmas, Jean-Francois ;
Hoscheit, Patrick .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-21
[2]   THE CONTINUUM RANDOM TREE-III [J].
ALDOUS, D .
ANNALS OF PROBABILITY, 1993, 21 (01) :248-289
[3]  
Aldous D., 1991, LONDON MATH SOC LECT, V167, P23, DOI DOI 10.1017/CBO9780511662980.003
[4]  
Artin E., 1964, GAMMA FUNCTION
[5]   Self-similar fragmentations [J].
Bertoin, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (03) :319-340
[6]   Homogeneous fragmentation processes [J].
Bertoin, J .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (03) :301-318
[7]  
Bertoin J., 2006, CAMBRIDGE STUDIES AD, V102
[8]  
Bhamidi S., 2007, PREPRINT
[9]   A new family of Markov branching trees: the alpha-gamma model [J].
Chen, Bo ;
Ford, Daniel ;
Winkel, Matthias .
ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 :400-430
[10]   The stable trees are nested [J].
Curien, Nicolas ;
Haas, Benedicte .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) :847-883