Scaling limits of k-ary growing trees

被引:10
作者
Haas, Benedicte [1 ,2 ]
Stephenson, Robin [3 ]
机构
[1] Univ Paris 09, F-75005 Paris, France
[2] Ecole Normale Super, F-75005 Paris, France
[3] Univ Paris 09, F-75775 Paris 16, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 04期
关键词
Random growing trees; Scaling limits; Self-similar fragmentation trees; Gromov-Hausdorff-Prokhorov topology; MARKOV BRANCHING TREES; FRAGMENTATIONS;
D O I
10.1214/14-AIHP622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For each integer k >= 2, we introduce a sequence of k-ary discrete trees constructed recursively by choosing at each step an edge uniformly among the present edges and grafting on "its middle" k - 1 new edges. When k = 2, this corresponds to a well-known algorithm which was first introduced by Remy. Our main result concerns the asymptotic behavior of these trees as the number of steps n of the algorithm becomes large: for all k, the sequence of k-ary trees grows at speed n(1/k) towards a k-ary random real tree that belongs to the family of self-similar fragmentation trees. This convergence is proved with respect to the Gromov-Hausdorff-Prokhorov topology. We also study embeddings of the limiting trees when k varies.
引用
收藏
页码:1314 / 1341
页数:28
相关论文
共 32 条
  • [1] A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces
    Abraham, Romain
    Delmas, Jean-Francois
    Hoscheit, Patrick
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [2] THE CONTINUUM RANDOM TREE-III
    ALDOUS, D
    [J]. ANNALS OF PROBABILITY, 1993, 21 (01) : 248 - 289
  • [3] Aldous D., 1991, LONDON MATH SOC LECT, V167, P23, DOI DOI 10.1017/CBO9780511662980.003
  • [4] Artin E., 1964, GAMMA FUNCTION
  • [5] Self-similar fragmentations
    Bertoin, J
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (03): : 319 - 340
  • [6] Homogeneous fragmentation processes
    Bertoin, J
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (03) : 301 - 318
  • [7] Bertoin J., 2006, CAMBRIDGE STUDIES AD, V102
  • [8] Bhamidi S., 2007, PREPRINT
  • [9] A new family of Markov branching trees: the alpha-gamma model
    Chen, Bo
    Ford, Daniel
    Winkel, Matthias
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 400 - 430
  • [10] The stable trees are nested
    Curien, Nicolas
    Haas, Benedicte
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 847 - 883