Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

被引:18
作者
Daly, Paul [1 ,6 ]
van Munster, Jolanda M. [1 ,7 ]
Blythe, Martin J. [2 ]
Ibbett, Roger [3 ]
Kokolski, Matt [1 ]
Gaddipati, Sanyasi [3 ]
Lindquist, Erika [4 ]
Singan, Vasanth R. [4 ]
Barry, Kerrie W. [4 ]
Lipzen, Anna [4 ]
Ngan, Chew Yee [4 ]
Petzold, Christopher J. [5 ]
Chan, Leanne Jade G. [5 ]
Pullan, Steven T. [1 ,8 ]
Delmas, Stephane [1 ,9 ]
Waldron, Paul R. [3 ]
Grigoriev, Igor V. [4 ]
Tucker, Gregory A. [3 ]
Simmons, Blake A. [5 ]
Archer, David B. [1 ]
机构
[1] Univ Nottingham, Sch Life Sci, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham, Fac Med & Hlth Sci, Queens Med Ctr, Deep Seq, Nottingham NG7 2UH, England
[3] Univ Nottingham, Sch Biosci, Sutton Bonington Campus, Loughborough LE12 5RD, Leics, England
[4] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA
[5] Joint BioEnergy Inst, Emeryville, CA 94608 USA
[6] Univ Utrecht, Fungal Physiol, CBS KNAW Fungal Biodivers Ctr, Uppsalalaan 8, NL-3584 CT Utrecht, Netherlands
[7] Univ Manchester, Chem Biol, Manchester Inst Biotechnol, 131 Princess St, Manchester M1 7DN, Lancs, England
[8] Publ Hlth England, TB Programme, Microbiol Serv, Salisbury, Wilts, England
[9] Univ Paris 06, CNRS UMR7238, UPMC, Sorbonne Univ, 15 Rue Ecole Med, F-75270 Paris, France
基金
英国生物技术与生命科学研究理事会;
关键词
Aspergillus niger; Lignocellulose; Ionic liquid and hydrothermal pretreatments; Straw; Transcriptomic responses; CAZy; Hemicellulose; RNA-seq; Targeted proteomics; D-GALACTURONIC ACID; TRICHODERMA-REESEI; GENE-EXPRESSION; LIGNOCELLULOSIC BIOMASS; SYSTEMS-ANALYSIS; CLONING; DEGRADATION; ENZYMES; LIGNIN; DECONSTRUCTION;
D O I
10.1186/s13068-017-0700-9
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. Results: We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. Conclusions: The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL-pretreated straw, but not HT-pretreated straw, as feedstock for CAZyme production.
引用
收藏
页数:19
相关论文
共 70 条
  • [1] Cloning and characterization of Aspergillus niger genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation
    Ademark, P
    de Vries, RP
    Hägglund, P
    Stålbrand, H
    Visser, J
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (10): : 2982 - 2990
  • [2] Akileswaran L, 1999, APPL ENVIRON MICROB, V65, P415
  • [3] The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of D-galacturonic acid from pectin
    Alazi, Ebru
    Niu, Jing
    Kowalczyk, Joanna E.
    Peng, Mao
    Pontes, Maria Victoria Aguilar
    van Kan, Jan A. L.
    Visser, Jaap
    de Vries, Ronald P.
    Ram, Arthur F. J.
    [J]. FEBS LETTERS, 2016, 590 (12): : 1804 - 1815
  • [4] Mapping the polysaccharide degradation potential of Aspergillus niger
    Andersen, Mikael R.
    Giese, Malene
    de Vries, Ronald P.
    Nielsen, Jens
    [J]. BMC GENOMICS, 2012, 13
  • [5] Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88
    Andersen, Mikael R.
    Salazar, Margarita P.
    Schaap, Peter J.
    van de Vondervoort, Peter J. I.
    Culley, David
    Thykaer, Jette
    Frisvad, Jens C.
    Nielsen, Kristian F.
    Albang, Richard
    Albermann, Kaj
    Berka, Randy M.
    Braus, Gerhard H.
    Braus-Stromeyer, Susanna A.
    Corrochano, Luis M.
    Dai, Ziyu
    van Dijck, Piet W. M.
    Hofmann, Gerald
    Lasure, Linda L.
    Magnuson, Jon K.
    Menke, Hildegard
    Meijer, Martin
    Meijer, Susan L.
    Nielsen, Jakob B.
    Samson, Rob A.
    Stam, Hein
    Tsang, Adrian
    van den Brink, Johannes M.
    Atkins, Alex
    Aerts, Andrea
    Shapiro, Harris
    Pangilinan, Jasmyn
    Salamov, Asaf
    Lou, Yigong
    Lindquist, Erika
    Lucas, Susan
    Grimwood, Jane
    Grigoriev, Igor V.
    Kubicek, Christian P.
    Martinez, Diego
    van Peij, Noel N. M. E.
    Roubos, Johannes A.
    Nielsen, Jens
    Baker, Scott E.
    [J]. GENOME RESEARCH, 2011, 21 (06) : 885 - 897
  • [6] Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger
    Andersen, Mikael Rordam
    Nielsen, Michael Lynge
    Nielsen, Jens
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1) : 178
  • [7] A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations
    Benz, J. Philipp
    Chau, Bryant H.
    Zheng, Diana
    Bauer, Stefan
    Glass, N. Louise
    Somerville, Chris R.
    [J]. MOLECULAR MICROBIOLOGY, 2014, 91 (02) : 275 - 299
  • [8] Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose
    Bischof, Robert
    Fourtis, Lukas
    Limbeck, Andreas
    Gamauf, Christian
    Seiboth, Bernhard
    Kubicek, Christian P.
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
  • [9] An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data
    Braaksma, Machtelt
    Martens-Uzunova, Elena S.
    Punt, Peter J.
    Schaap, Peter J.
    [J]. BMC GENOMICS, 2010, 11
  • [10] Transition of Cellulose Crystalline Structure and Surface Morphology of Biomass as a Function of Ionic Liquid Pretreatment and Its Relation to Enzymatic Hydrolysis
    Cheng, Gang
    Varanasi, Patanjali
    Li, Chenlin
    Liu, Hanbin
    Menichenko, Yuri B.
    Simmons, Blake A.
    Kent, Michael S.
    Singh, Seema
    [J]. BIOMACROMOLECULES, 2011, 12 (04) : 933 - 941