A splitting method for nonlinear diffusions with nonlocal, nonpotential drifts

被引:12
作者
Carlier, Guillaume [1 ]
Laborde, Maxime
机构
[1] Univ Paris 09, PSL Res Univ, CNRS, CEREMADE, F-75016 Paris, France
关键词
Wasserstein gradient flows; Jordan-Kinderlehrer-Otto scheme; Splitting; Nonlocal drift; Nonlinear diffusions; Helmholtz decomposition; EQUATIONS; SPACES;
D O I
10.1016/j.na.2016.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an existence result for nonlinear diffusion equations in the presence of a nonlocal density-dependent drift which is not necessarily potential. The proof is constructive and based on the Helmholtz decomposition of the drift and a splitting scheme. The splitting scheme combines transport steps by the divergence-free part of the drift and semi-implicit minimization steps a la Jordan-Kinderlehrer Otto to deal with the potential part. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 18 条
[1]  
Agueh M, 2005, ADV DIFFERENTIAL EQU, V10, P309
[2]  
Ambrosio L., 2005, LECT MATH
[3]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[5]   Remarks on continuity equations with nonlinear diffusion and nonlocal drifts [J].
Carlier, Guillaume ;
Laborde, Maxime .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1690-1702
[6]   GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS [J].
Carrillo, J. A. ;
Difrancesco, M. ;
Figalli, A. ;
Laurent, T. ;
Slepcev, D. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) :229-271
[7]   Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations [J].
Di Francesco, Marco ;
Matthes, Daniel .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 50 (1-2) :199-230
[8]   Measure solutions for non-local interaction PDEs with two species [J].
Di Francesco, Marco ;
Fagioli, Simone .
NONLINEARITY, 2013, 26 (10) :2777-2808
[9]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[10]   The variational formulation of the Fokker-Planck equation [J].
Jordan, R ;
Kinderlehrer, D ;
Otto, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (01) :1-17