VARIATIONAL APPROXIMATION OF A FUNCTIONAL OF MUMFORD-SHAH TYPE IN CODIMENSION HIGHER THAN ONE

被引:0
作者
Ghiraldin, Francesco [1 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Jacobian; Gamma-convergence; higher codimension; Mumford-Shah; Ginzburg-Landau; phase transition; LOWER SEMICONTINUITY; EXISTENCE THEORY; FLAT CHAINS;
D O I
10.1051/cocv/2013061
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider a new kind of Mumford-Shah functional E(u, Omega) for maps u : R-m -> R-n with m >= n. The most important novelty is that the energy features a singular set S-u of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Omega) via Gamma-convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999-1036].
引用
收藏
页码:190 / 221
页数:32
相关论文
共 44 条