Electron Capture, Hydrogen Release, and Enhanced Gain Degradation in Linear Bipolar Devices

被引:60
作者
Fleetwood, Daniel M. [1 ]
Schrimpf, Ronald D. [1 ]
Pantelides, Sokrates T. [2 ]
Pease, Ronald L. [3 ]
Dunham, Gary W. [4 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[3] RLP Res, Los Lunas, NM 87031 USA
[4] NAVSEA, Crane, IN 47522 USA
关键词
Enhanced low-dose-rate sensitivity (ELDRS); hydrogen; interface trap charge; linear bipolar devices; oxide trap charge; vacancies;
D O I
10.1109/TNS.2008.2006485
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present evidence that enhanced low-dose-rate sensitivity (ELDRS) in lateral and substrate pop bipolar devices can occur because of the much lower probability for electron capture by protons in SiO2, as compared to mobile or trapped holes. New experimental results and a critical evaluation of previous work demonstrate that, at high dose rates and/or in oxides with low concentrations of hydrogen, electrons can more easily neutralize slowly diffusing or metastably trapped holes via annihilation (recombination) or compensation (offsetting trapping) before the holes can release H. In contrast, at low dose rates and/or in oxides with higher concentrations of hydrogen, which can react with and modify the structure of O-vacancy-related defects, it is more likely that holes can release H+ during transport. This is because the cross section for electron capture by H+ is several orders of magnitude smaller than the electron capture cross section for a slowly moving or metastably trapped hole. This enhanced proton release at low dose rates or in oxides with high hydrogen concentrations can lead to increased interface trap formation, which is the most common source of enhanced gain degradation in lateral and substrate Imp bipolar transistors.
引用
收藏
页码:2986 / 2991
页数:6
相关论文
共 64 条
[1]  
BATYREV IG, 2008, IEEE T NUCL SCI, V55
[2]   Use of MOS structures for the investigation of low-dose-rate effects in bipolar transistors [J].
Belyakov, VV ;
Pershenkov, VS ;
Shalnov, AV ;
ShvetzovShilovsky, IN .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1995, 42 (06) :1660-1666
[3]   Hydrogen electrochemistry and stress-induced leakage current in silica [J].
Blöchl, PE ;
Stathis, JH .
PHYSICAL REVIEW LETTERS, 1999, 83 (02) :372-375
[4]   Dose rate effects in bipolar oxides: Competition between trap filling and recombination [J].
Boch, J. ;
Saigne, F. ;
Touboul, A. D. ;
Ducret, S. ;
Carlotti, J. -F. ;
Bernard, M. ;
Schrimpf, R. D. ;
Wrobel, F. ;
Sarrabayrouse, G. .
APPLIED PHYSICS LETTERS, 2006, 88 (23)
[5]   Physical model for the low-dose-rate effect in bipolar devices [J].
Boch, J. ;
Saigne, F. ;
Schrimpf, R. D. ;
Vaille, J. -R. ;
Dusseau, L. ;
Lorfevre, E. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (06) :3655-3660
[6]   Hydrogen-related defects in irradiated SiO2 [J].
Bunson, PE ;
Di Ventra, M ;
Pantelides, ST ;
Fleetwood, DM ;
Schrimpf, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2000, 47 (06) :2289-2296
[7]   Microscopic structure of the E′δ center in amorphous SiO2:: A first principles quantum mechanical investigation [J].
Chavez, JR ;
Karna, SP ;
Vanheusden, K ;
Brothers, CP ;
Pugh, RD ;
Singaraju, BK ;
Warren, WL ;
Devine, RAB .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (06) :1799-1803
[8]   Mechanisms of enhanced radiation-induced degradation due to excess molecular hydrogen in bipolar oxides [J].
Chen, X. J. ;
Barnaby, H. J. ;
Vermeire, B. ;
Holbert, K. ;
Wright, D. ;
Pease, R. L. ;
Dunham, G. ;
Platteter, D. G. ;
Seiler, J. ;
McClure, S. ;
Adell, P. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (06) :1913-1919
[9]   OBSERVATION AND ELECTRONIC CHARACTERIZATION OF NEW E' CENTER DEFECTS IN TECHNOLOGICALLY RELEVANT THERMAL SIO(2) ON SI - AN ADDITIONAL COMPLEXITY IN OXIDE CHARGE TRAPPING [J].
CONLEY, JF ;
LENAHAN, PM ;
EVANS, HL ;
LOWRY, RK ;
MORTHORST, TJ .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (05) :2872-2880
[10]   Effects of device aging on microelectronics radiation response and reliability [J].
Fleetwood, D. M. ;
Rodgers, M. P. ;
Tsetseris, L. ;
Zhou, X. J. ;
Batyrev, I. ;
Wang, S. ;
Schrimpf, R. D. ;
Pantelides, S. T. .
MICROELECTRONICS RELIABILITY, 2007, 47 (07) :1075-1085