Optoelectronic Implementation of Compact and Power-efficient Recurrent Neural Networks

被引:0
作者
Ichikawa, Taisei [1 ]
Masuda, Yutaka [1 ]
Ishihara, Tohru [1 ]
Shinya, Akihiko [2 ]
Notomi, Masaya [2 ]
机构
[1] Nagoya Univ, Grad Sch Informat, Furo Cho,Chikusa Ku, Nagoya, Aichi, Japan
[2] NTT Nanophoton Ctr, Basic Res Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, Japan
来源
2022 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2022) | 2022年
关键词
optical computing; neuromorphic computing; recurrent neural network;
D O I
10.1109/ISVLSI54635.2022.00087
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Optoelectronic implementation of artificial neural networks (ANNs) has been attracting significant attention due to its potential for low-power computation at the speed of light. Among the ANNs, adopting recurrent neural network (RNN) is a promising solution since it provides sufficient inference accuracy with a more compact structure than other ANNs. This paper proposes a novel optoelectronic architecture of RNN. The key idea is to implement the vector-matrix multiplication optically to exploit the speed of light and implement the activation and feedback electronically to exploit the controllability of electronics. The electronics part is composed of an electrical feedback circuit with a dynamic latch to synchronize the recurrent loops with a clock signal. Using a commercial optoelectronic circuit simulator, we confirm the correct behavior of the optoelectronic RNN. Experimental results obtained using TensorFlow show that the proposed optoelectronic RNN achieves more than 98% inference accuracy in image classification with a minimal footprint without sacrificing low-power and high-speed nature of light.
引用
收藏
页码:390 / 393
页数:4
相关论文
共 18 条
[1]   Parallel convolutional processing using an integrated photonic tensor core [J].
Feldmann, J. ;
Youngblood, N. ;
Karpov, M. ;
Gehring, H. ;
Li, X. ;
Stappers, M. ;
Le Gallo, M. ;
Fu, X. ;
Lukashchuk, A. ;
Raja, A. S. ;
Liu, J. ;
Wright, C. D. ;
Sebastian, A. ;
Kippenberg, T. J. ;
Pernice, W. H. P. ;
Bhaskaran, H. .
NATURE, 2021, 589 (7840) :52-+
[2]  
Feng CH, 2020, CONF LASER ELECTR
[3]  
Gu JQ, 2021, PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), P238
[4]   Toward Hardware-Efficient Optical Neural Networks: Beyond FFT Architecture via Joint Learnability [J].
Gu, Jiaqi ;
Zhao, Zheng ;
Feng, Chenghao ;
Ying, Zhoufeng ;
Liu, Mingjie ;
Chen, Ray T. ;
Pan, David Z. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2021, 40 (09) :1796-1809
[5]  
Hattori N, 2021, PROC SPIE OPTO OPTIC, V11703
[6]   An Optical Neural Network Architecture based on Highly Parallelized WDM-Multiplier-Accumulator [J].
Ishihara, Tohru ;
Shiomi, Jun ;
Hattori, Naoki ;
Masuda, Yutaka ;
Shinya, Akihiko ;
Notomi, Masaya .
PROCEEDINGS OF 2019 IEEE/ACM WORKSHOP ON PHOTONICS-OPTICS TECHNOLOGY ORIENTED NETWORKING, INFORMATION AND COMPUTING SYSTEMS (PHOTONICS2019), 2019, :15-21
[7]  
Janosik N., 2019, PROC CLEO
[8]   Ultrashort low-loss Ψ gates for linear optical logic on Si photonics platform [J].
Kita, Shota ;
Nozaki, Kengo ;
Takata, Kenta ;
Shinya, Akihiko ;
Notomi, Masaya .
COMMUNICATIONS PHYSICS, 2020, 3 (01)
[9]   An ultra-small, low-power, all-optical flip-flop memory on a silicon chip [J].
Liu, Liu ;
Kumar, Rajesh ;
Huybrechts, Koen ;
Spuesens, Thijs ;
Roelkens, Guenther ;
Geluk, Erik-Jan ;
de Vries, Tjibbe ;
Regreny, Philippe ;
Van Thourhout, Dries ;
Baets, Roel ;
Morthier, Geert .
NATURE PHOTONICS, 2010, 4 (03) :182-187
[10]  
Liu WC, 2019, DES AUT TEST EUROPE, P1483, DOI [10.23919/date.2019.8715195, 10.23919/DATE.2019.8715195]