On classes of generalized convex functions, Gordan-Farkas type theorems, and Lagrangian duality

被引:28
作者
Frenk, JBG
Kassay, G
机构
[1] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
[2] Univ Babes Bolyai, Fac Math, R-3400 Cluj Napoca, Romania
关键词
generalized convexity; Gordan-Farkas type theorems; Lagrangian duality;
D O I
10.1023/A:1021780423989
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce several classes of generalized convex functions already discussed in the literature and show the relation between these classes. Moreover, a Gordan-Farkas type theorem is proved for all these classes and it is shown how these theorems can be used to verify strong Lagrangian duality results in finite-dimensional optimization.
引用
收藏
页码:315 / 343
页数:29
相关论文
共 16 条
[1]  
ALEMAN A, 1985, MATH REV ANAL NUMERI, V14, P1
[2]  
Blaga L, 1994, LECT NOTES EC MATH S, V405, P19
[3]  
Breckner W. W., 1997, J CONVEX ANAL, V4, P1
[4]  
Craven B. D., 1987, Optimization, V18, P151, DOI 10.1080/02331938708843228
[5]  
CRAVEN BD, 1978, MATH PROGRAMMING CON
[7]  
HAYASHI M, 1982, J OPTIMIZ THEORY APP, V38, P179, DOI 10.1007/BF00934081
[8]  
Hiriart-Urruty J-B., 1993, CONVEX ANAL MINIMIZA
[9]  
Ill┬u┬s T., 1994, PURE MATH APPL, V5, P225
[10]   INEQUALITY SYSTEMS AND OPTIMIZATION [J].
JEYAKUMAR, V ;
GWINNER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 159 (01) :51-71