Supervised Object-Specific Distance Estimation from Monocular Images for Autonomous Driving

被引:4
作者
Davydov, Yury [1 ]
Chen, Wen-Hui [1 ]
Lin, Yu-Chen [2 ]
机构
[1] Natl Taipei Univ Technol, Grad Inst Automat Technol, Taipei 10608, Taiwan
[2] Feng Chia Univ, Dept Automat Control Engn, Taichung 40724, Taiwan
关键词
monocular depth estimation; autonomous driving; computer vision; convolutional neural networks;
D O I
10.3390/s22228846
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate distance estimation is a requirement for advanced driver assistance systems (ADAS) to provide drivers with safety-related functions such as adaptive cruise control and collision avoidance. Radars and lidars can be used for providing distance information; however, they are either expensive or provide poor object information compared to image sensors. In this study, we propose a lightweight convolutional deep learning model that can extract object-specific distance information from monocular images. We explore a variety of training and five structural settings of the model and conduct various tests on the KITTI dataset for evaluating seven different road agents, namely, person, bicycle, car, motorcycle, bus, train, and truck. Additionally, in all experiments, a comparison with the Monodepth2 model is carried out. Experimental results show that the proposed model outperforms Monodepth2 by 15% in terms of the average weighted mean absolute error (MAE).
引用
收藏
页数:12
相关论文
共 22 条
[1]   Attention-based context aggregation network for monocular depth estimation [J].
Chen, Yuru ;
Zhao, Haitao ;
Hu, Zhengwei ;
Peng, Jingchao .
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (06) :1583-1596
[2]   Class-Balanced Loss Based on Effective Number of Samples [J].
Cui, Yin ;
Jia, Menglin ;
Lin, Tsung-Yi ;
Song, Yang ;
Belongie, Serge .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9260-9269
[3]  
Eigen D, 2014, ADV NEUR IN, V27
[4]   Deep Ordinal Regression Network for Monocular Depth Estimation [J].
Fu, Huan ;
Gong, Mingming ;
Wang, Chaohui ;
Batmanghelich, Kayhan ;
Tao, Dacheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2002-2011
[5]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[6]   Digging Into Self-Supervised Monocular Depth Estimation [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Firman, Michael ;
Brostow, Gabriel .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3827-3837
[7]   Unsupervised Monocular Depth Estimation with Left-Right Consistency [J].
Godard, Clement ;
Mac Aodha, Oisin ;
Brostow, Gabriel J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6602-6611
[8]   Depth from Camera Motion and Object Detection [J].
Griffin, Brent A. ;
Corso, Jason J. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1397-1406
[9]   3D Packing for Self-Supervised Monocular Depth Estimation [J].
Guizilini, Vitor ;
Ambrus, Rares ;
Pillai, Sudeep ;
Raventos, Allan ;
Gaidon, Adrien .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :2482-2491
[10]   Bounding Box Regression with Uncertainty for Accurate Object Detection [J].
He, Yihui ;
Zhu, Chenchen ;
Wang, Jianren ;
Savvides, Marios ;
Zhang, Xiangyu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2883-2892