Positive solutions to a multi-point higher order boundary value problem

被引:66
作者
Graef, JR [1 ]
Yang, B
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Kennesaw State Univ, Dept Math, Kennesaw, GA 30144 USA
关键词
positive solutions; higher order boundary value problem; fixed point;
D O I
10.1016/j.jmaa.2005.04.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors consider a higher order multi-point boundary value problem. Some existence and nonexistence results for positive solutions of the problem,are obtained by using Krasnosel'skii's fixed point theorem. Examples are included to illustrate the results. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 421
页数:13
相关论文
共 12 条
[1]  
Agarwal R.P., 1998, FOCAL BOUNDARY VALUE
[2]  
[Anonymous], 2013, TREATISE MATH THEORY
[3]  
[Anonymous], 1998, POSITIVE SOLUTIONS D
[4]  
CAO D, 2000, ELECT J DIFFERENTIAL, P1
[5]  
Dulacska E., 1992, DEV GEOTECHNICAL ENG, V69
[6]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[7]   Three positive solutions for second-order m-point boundary value problems [J].
Liu, XJ ;
Qiu, JQ ;
Guo, YP .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) :733-742
[8]   Positive solutions for nonlinear m-point boundary value problems of Dirichlet type via fixed-point index theory [J].
Ma, RY ;
Ren, LS .
APPLIED MATHEMATICS LETTERS, 2003, 16 (06) :863-869
[9]  
MANSFIELD E. H., 1964, INT SER MONOGR AERON, V6
[10]  
Prescott John, 1961, APPL ELASTICITY