Layer-controlled Pt-Ni porous nanobowls with enhanced electrocatalytic performance

被引:50
作者
Fan, Hongsheng [1 ]
Cheng, Ming [1 ]
Wang, Zhenlei [1 ]
Wang, Rongming [2 ]
机构
[1] Beihang Univ, Dept Phys, Beijing 100191, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Pt-Ni nanobowls; facile synthesis; sodium citrate; poly(vinylpyrrolidone) (PVP); electrocatalysis; METHANOL FUEL-CELLS; OXYGEN REDUCTION REACTION; ALLOY NANOPARTICLES; PLATINUM NANOTUBES; ROOM-TEMPERATURE; FACILE SYNTHESIS; OXIDATION; HOLLOW; PD; NANOCAGES;
D O I
10.1007/s12274-016-1277-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hollow and porous Pt-based nanomaterials are promising catalysts with applications in many sustainable energy technologies such as fuel cells. Economical and green synthetic routes are highly desirable. Here, we report a facile approach to prepare double- and single-layered Pt-Ni nanobowls (DLNBs and SLNBs) with porous shells. Microstructural analysis revealed that the shells were constructed of alloyed Pt-Ni nanocrystals and small amounts of Ni compounds. X-ray photoelectron spectra showed that their Pt 4f binding energies shifted in the negative direction compared to those of the commercial Pt/C catalyst. Furthermore, the DLNBs contained greater contents of oxidized Ni species than the SLNBs. The layer-controlled growth processes were confirmed by microscopy, and a formation mechanism was proposed based on the assistance of citrate and poly(vinylpyrrolidone) (PVP). For the methanol oxidation reaction, the DLNBs and SLNBs exhibited 2.9 and 2.5 times higher mass activities than that of the commercial Pt/C catalyst, respectively. The activity enhancements were attributed to electronic effects and a bifunctional mechanism. Chronoamperometry and prolonged cyclic voltammetry indicated that the Pt-Ni bowl-like structures had better electrochemical properties and structural stability than the commercial Pt/C catalyst, thus making the Pt-Ni nanobowls excellent electrocatalysts for use in direct methanol fuel cells.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 47 条
[1]   Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions [J].
Alia, Shaun M. ;
Zhang, Gang ;
Kisailus, David ;
Li, Dongsheng ;
Gu, Shuang ;
Jensen, Kurt ;
Yan, Yushan .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (21) :3742-3746
[2]   High-efficiency carbon-supported platinum catalysts stabilized with sodium citrate for methanol oxidation [J].
Bai, Zhengyu ;
Yang, Lin ;
Zhang, Jiangshan ;
Li, Lei ;
Hu, Chuangang ;
Lv, Jing ;
Guo, Yuming .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2653-2658
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity [J].
Cai, Kai ;
Lv, Zhicheng ;
Chen, Kun ;
Huang, Liang ;
Wang, Jing ;
Shao, Feng ;
Wang, Yanjun ;
Han, Heyou .
CHEMICAL COMMUNICATIONS, 2013, 49 (54) :6024-6026
[5]   Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction [J].
Cao, Xia ;
Han, Yu ;
Gao, Caizhen ;
Xu, Ying ;
Huang, Xiaomin ;
Willander, Magnus ;
Wang, Ning .
NANO ENERGY, 2014, 9 :301-308
[6]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[7]   Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J].
Chen, Chen ;
Kang, Yijin ;
Huo, Ziyang ;
Zhu, Zhongwei ;
Huang, Wenyu ;
Xin, Huolin L. ;
Snyder, Joshua D. ;
Li, Dongguo ;
Herron, Jeffrey A. ;
Mavrikakis, Manos ;
Chi, Miaofang ;
More, Karren L. ;
Li, Yadong ;
Markovic, Nenad M. ;
Somorjai, Gabor A. ;
Yang, Peidong ;
Stamenkovic, Vojislav R. .
SCIENCE, 2014, 343 (6177) :1339-1343
[8]   Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst [J].
Cui, Chun-Hua ;
Li, Hui-Hui ;
Yu, Shu-Hong .
CHEMICAL SCIENCE, 2011, 2 (08) :1611-1614
[9]   Au/Ni12P5 core/shell nanocrystals from bimetallic heterostructures: in situ synthesis, evolution and supercapacitor properties [J].
Duan, Sibin ;
Wang, Rongming .
NPG ASIA MATERIALS, 2014, 6 :e122-e122
[10]   Tuning the Performance and the Stability of Porous Hollow PtNi/C Nanostructures for the Oxygen Reduction Reaction [J].
Dubau, Laetitia ;
Asset, Tristan ;
Chattot, Raphael ;
Bonnaud, Celine ;
Vanpeene, Victor ;
Nelayah, Jaysen ;
Maillard, Frederic .
ACS CATALYSIS, 2015, 5 (09) :5333-5341