Modelling Group Heterogeneity for Small Area Estimation Using M-Quantiles

被引:3
作者
Dawber, James [1 ]
Chambers, Raymond [2 ]
机构
[1] Univ Southampton, Social Stat & Demog, Southampton Stat Sci Res Inst, Southampton SO17 1BJ, Hants, England
[2] Univ Wollongong, Natl Inst Appl Stat Res Australia, Wollongong, NSW 2522, Australia
关键词
small area estimation; random effects model; M-quantile regression;
D O I
10.1111/insr.12284
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Small area estimation typically requires model-based methods that depend on isolating the contribution to overall population heterogeneity associated with group (i.e. small area) membership. One way of doing this is via random effects models with latent group effects. Alternatively, one can use an M-quantile ensemble model that assigns indices to sampled individuals characterising their contribution to overall sample heterogeneity. These indices are then aggregated to form group effects. The aim of this article is to contrast these two approaches to characterising group effects and to illustrate them in the context of small area estimation. In doing so, we consider a range of different data types, including continuous data, count data and binary response data.
引用
收藏
页码:S50 / S63
页数:14
相关论文
共 18 条
  • [1] BRECKLING J, 1988, BIOMETRIKA, V75, P761
  • [2] Robust inference for generalized linear models
    Cantoni, E
    Ronchetti, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) : 1022 - 1030
  • [3] M-quantile models for small area estimation
    Chambers, Ray
    Tzavidis, Nikos
    [J]. BIOMETRIKA, 2006, 93 (02) : 255 - 268
  • [4] Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK
    Chambers, Ray
    Salvati, Nicola
    Tzavidis, Nikos
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (02) : 453 - 479
  • [5] Disease mapping via negative binomial regression M-quantiles
    Chambers, Ray
    Dreassi, Emanuela
    Salvati, Nicola
    [J]. STATISTICS IN MEDICINE, 2014, 33 (27) : 4805 - 4824
  • [6] Multinomial logit random effects models
    Hartzel, Jonathan
    Agresti, Alan
    Caffo, Brian
    [J]. STATISTICAL MODELLING, 2001, 1 (02) : 81 - 102
  • [7] Huber P.J., 2004, ROBUST STAT
  • [8] REGRESSION QUANTILES
    KOENKER, R
    BASSETT, G
    [J]. ECONOMETRICA, 1978, 46 (01) : 33 - 50
  • [9] A measure of production performance
    Kokic, P
    Chambers, R
    Breckling, J
    Beare, S
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1997, 15 (04) : 445 - 451
  • [10] Multinomial-based small area estimation of labour force indicators
    Lopez-Vizcaino, Esther
    Jose Lombardia, Maria
    Morales, Domingo
    [J]. STATISTICAL MODELLING, 2013, 13 (02) : 153 - 178