ORIENTED INVOLUTIONS AND SKEW-SYMMETRIC ELEMENTS IN GROUP RINGS

被引:2
作者
Goodaire, Edgar G. [1 ]
Milies, Cesar Polcino [2 ]
机构
[1] Mem Univ Newfoundland, St John, NF A1C 5S7, Canada
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05314970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Group ring; ring with involution; skew-symmetric element;
D O I
10.1142/S0219498812501319
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group with involution * and sigma : G -> {+/- 1} a group homomorphism. The map # that sends alpha = Sigma alpha(g)g in a group ring RG to alpha(#) = Sigma sigma(g)alpha(g)g* is an involution of RG called an oriented group involution. An element alpha epsilon RG is symmetric if alpha(#) = alpha and skew-symmetric if alpha(#) = -alpha. The sets of symmetric and skew-symmetric elements have received a lot of attention in the special cases that * is the inverse map on G or sigma is identically 1, while the general case has been almost ignored. In this paper, we determine the conditions under which the set of elements that are skew-symmetric relative to a general oriented involution form a subring of RG. This is the sequel to another paper where the analogous problem for the symmetric elements was studied, with a small oversight that is corrected here.
引用
收藏
页数:10
相关论文
共 8 条
[1]  
[Anonymous], 1970, I. Math USSR Izv, DOI [DOI 10.1070/IM1970V004N02ABEH000903, 10.1070/IM1970v004n02ABEH000903]
[2]  
Cristo O. B., 2006, COMMUN ALGEBRA, V334, P537
[3]   LIE NILPOTENCY OF GROUP-RINGS [J].
GIAMBRUNO, A ;
SEHGAL, SK .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (11) :4253-4261
[4]  
Goodaire E. G., CANAD MATH IN PRESS
[5]  
Goodaire E. G., 1996, N HOLLAND MATH STUDI, V184
[6]  
Goodaire E. G., 2011, PREPRINT
[7]  
Lee GT, 2010, ALGEBRA APPL, V12, P1, DOI 10.1007/978-1-84996-504-0
[8]  
Novikov S. P., 1970, MATH USSR IZV, V4, P479, DOI 10.1070/IM1970v004n03ABEH000916