MODIFIED AKAIKE INFORMATION CRITERION FOR ESTIMATING THE NUMBER OF COMPONENTS IN A PROBABILITY MIXTURE MODEL
被引:0
|
作者:
Elnakib, Ahmed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USAUniv Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
Elnakib, Ahmed
[1
]
Gimel'farb, Georgy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Auckland, Dept Comp Sci, Auckland, New ZealandUniv Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
Gimel'farb, Georgy
[2
]
Inanc, Tamer
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louisville, Dept Elect & Comp Engn, Louisville, KY 40292 USAUniv Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
Inanc, Tamer
[3
]
El-Baz, Ayman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USAUniv Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
El-Baz, Ayman
[1
]
机构:
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[3] Univ Louisville, Dept Elect & Comp Engn, Louisville, KY 40292 USA
来源:
2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012)
|
2012年
关键词:
Mixture model;
number of components;
Akaike information criterion;
modified AIC;
medical image segmentation;
SEGMENTATION;
ALGORITHM;
D O I:
暂无
中图分类号:
TB8 [摄影技术];
学科分类号:
0804 ;
摘要:
To estimate the number of unimodal components in a mixture model of a marginal probability distribution of signals while learning the model with a conventional Expectation-Maximization (EM) algorithm, a modification of the well-known Akaike information criterion (AIC) called the modified AIC (mAIC), is proposed. Embedding the mAIC into the EM algorithm allows us to exclude sequentially, one-by-one, the least informative components from their initially excessive, or over-fitting set. Experiments on modeling empirical marginal signal distributions with mixtures of continuous or discrete Gaussians in order to describe the visual appearance of synthetic phantoms and real medical 3D images (lung CT and brain MRI) demonstrate a marked and monotone increase of the mAIC towards its maximum at the proper number that is known for the synthetic phantom or practically justified for the real image. These results confirm the accuracy and robustness of the proposed automated mAIC-EM based learning.
机构:
Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R ChinaChinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
Peng, Jun
Dong, Zhibao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R ChinaChinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
Dong, Zhibao
Han, Fengqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Qinghai Inst Salt Lakes, Xining 810008, Peoples R ChinaChinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
Han, Fengqing
Han, Yuanhong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Geol & Geophys, Lanzhou Ctr Oil & Gas Resources, Lanzhou 730000, Peoples R ChinaChinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
Han, Yuanhong
Dai, Xueling
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R ChinaChinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China