ALTRec: Adversarial Learning for Autoencoder-based Tail Recommendation

被引:2
|
作者
Liu, Jixiong [1 ]
Liu, Dugang [1 ]
Pan, Weike [1 ]
Ming, Zhong [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Guangdong Lab Artificial Intelligence & Digital E, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial Learning; Tail Recommendation; Collaborative Filtering; Implicit Feedback;
D O I
10.1109/DSAA54385.2022.10032423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autoencoder-based methods have achieved significant performance on item recommendation. However, they may not perform well on tail items due to the ignorance of the items' popularity bias. As a response, in this paper, we focus on tail items and propose a novel adversarial learning method for tail recommendation (ALTRec). In our ALTRec, the generator (i.e., AutoRec) not only reconstructs the input well, but also minimizes the (any two-user) similarity difference between the input stage and the output stage to keep users' interaction relationships unchanged. And the discriminator maps the inputs and outputs of the generator to a same semantic space for scoring the similarity and maximizes the similarity difference as the target, and will identify some unsatisfactory predictions, especially on tail items. In order to preserve the similarity, the generator will pay more attention to the tail items compared with the previous autoencoder-based methods. An ablation study validates the effectiveness of preserving the two-user similarity, as well as the adversarial learning strategy in our ALTRec. Extensive experiments on three real-world datasets show that our ALTRec significantly boosts the performance on tail items compared with several state-of-the-art methods.
引用
收藏
页码:288 / 296
页数:9
相关论文
共 50 条
  • [21] Semantic Oppositeness Embedding Using an Autoencoder-Based Learning Model
    de Silva, Nisansa
    Dou, Dejing
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT I, 2019, 11706 : 159 - 174
  • [22] An Autoencoder-Based Learning Method for Wireless Communication Protocol Identification
    Ren, Jie
    Wang, Zulin
    Xu, Mai
    COMMUNICATIONS AND NETWORKING, CHINACOM 2017, PT I, 2018, 236 : 535 - 545
  • [23] Autoencoder-based Image Companding
    Wicaksono, Alim H. P.
    Prasetyo, Heri
    Guo, Jing-Ming
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [24] RAIDS: Robust autoencoder-based intrusion detection system model against adversarial attacks
    Sarikaya, Alper
    Kilic, Banu Gunel
    Demirci, Mehmet
    COMPUTERS & SECURITY, 2023, 135
  • [25] Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation
    Xie, Zhe
    Liu, Chengxuan
    Zhang, Yichi
    Lu, Hongtao
    Wang, Dong
    Ding, Yue
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 449 - 459
  • [26] Autoencoder-Based Collaborative Filtering
    Ouyang, Yuanxin
    Liu, Wenqi
    Rong, Wenge
    Xiong, Zhang
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 284 - 291
  • [27] Wasserstein Adversarial Variational Autoencoder for Sequential Recommendation
    Liu, Wenbiao
    Rong, Xianjin
    Zhong, Yingli
    Zhu, Jinghua
    WEB AND BIG DATA, PT IV, APWEB-WAIM 2023, 2024, 14334 : 375 - 389
  • [28] Autoencoder-based conditional optimal transport generative adversarial network for medical image generation
    Wang, Jun
    Lei, Bohan
    Ding, Liya
    Xu, Xiaoyin
    Gu, Xianfeng
    Zhang, Min
    VISUAL INFORMATICS, 2024, 8 (01) : 15 - 25
  • [29] Regularizing Autoencoder-Based Matrix Completion Models via Manifold Learning
    Duc Minh Nguyen
    Tsiligianni, Evaggelia
    Calderbank, Robert
    Deligiannis, Nikos
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 1880 - 1884
  • [30] Deep Learning Autoencoder-based Compression for Current Source Model Waveforms
    Raslan, Waseem
    Ismail, Yehea
    2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,