Optimal and Most Exact Confidence Intervals for Person Parameters in Item Response Theory Models

被引:12
作者
Doebler, Anna [1 ]
Doebler, Philipp [1 ]
Holling, Heinz [1 ]
机构
[1] Univ Munster, Fachbereich Psychol & Sportwissensch FB 7, Inst Psychol, D-48149 Munster, Germany
关键词
confidence intervals; optimality; item response theory; monotone likelihood ratio; adaptive testing; APPROXIMATE;
D O I
10.1007/s11336-012-9290-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The common way to calculate confidence intervals for item response theory models is to assume that the standardized maximum likelihood estimator for the person parameter theta is normally distributed. However, this approximation is often inadequate for short and medium test lengths. As a result, the coverage probabilities fall below the given level of significance in many cases; and, therefore, the corresponding intervals are no longer confidence intervals in terms of the actual definition. In the present work, confidence intervals are defined more precisely by utilizing the relationship between confidence intervals and hypothesis testing. Two approaches to confidence interval construction are explored that are optimal with respect to criteria of smallness and consistency with the standard approach.
引用
收藏
页码:98 / 115
页数:18
相关论文
共 19 条
[1]   Comment:: Randomized confidence intervals and the mid-P approach [J].
Agresti, A ;
Gottard, A .
STATISTICAL SCIENCE, 2005, 20 (04) :367-387
[2]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[3]   BINOMIAL CONFIDENCE-INTERVALS [J].
BLYTH, CR ;
STILL, HA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) :108-116
[4]   MARGINAL MAXIMUM-LIKELIHOOD ESTIMATION OF ITEM PARAMETERS - APPLICATION OF AN EM ALGORITHM [J].
BOCK, RD ;
AITKIN, M .
PSYCHOMETRIKA, 1981, 46 (04) :443-459
[5]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[6]   Fuzzy and randomized confidence intervals and P-values [J].
Geyer, CJ ;
Meeden, GD .
STATISTICAL SCIENCE, 2005, 20 (04) :358-366
[7]   COMPARISON OF SOME APPROXIMATE CONFIDENCE-INTERVALS FOR THE BINOMIAL PARAMETER [J].
GHOSH, BK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (368) :894-900
[8]   MAXIMUM LIKELIHOOD ESTIMATES IN EXPONENTIAL RESPONSE MODELS [J].
HABERMAN, SJ .
ANNALS OF STATISTICS, 1977, 5 (05) :815-841
[9]  
Hornke L., 2000, Psicologica, V21, P175
[10]  
Hornke L., 1999, AMT ADAPTIVER MARTRI