Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress

被引:92
|
作者
Noman, Ali [1 ]
Ali, Shafaqat [2 ]
Naheed, Fomia [1 ]
Ali, Qasim [1 ]
Farid, Mujahid [2 ]
Rizwan, Muhammad [2 ]
Irshad, Muhammad Kashif [1 ]
机构
[1] Govt Coll Univ, Dept Bot, Faisalabad, Pakistan
[2] Govt Coll Univ, Dept Environm Sci & Engn, Faisalabad, Pakistan
关键词
antioxidant enzymes; ascorbic acid; biomass; drought; maize; SALT TOLERANCE; WATER-DEFICIT; SUPEROXIDE-DISMUTASE; ANTIOXIDANT ENZYMES; OXIDATIVE STRESS; HIGHER-PLANTS; ACID; WHEAT; SEEDLINGS; RESPONSES;
D O I
10.1080/03650340.2015.1028379
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize (Zea mays L.), grown in different Asian countries, undergoes drought stress during the hot summer periods, which is the most common cause for reduced growth and yield of maize worldwide. A greenhouse experiment was conducted to investigate the prompting role of ascorbic acid (AsA) in maize drought-tolerant (Agaiti-2002) and drought-sensitive (EV-1098) cultivars under two drought stress levels (control and 65% field capacity). Ascorbate is essential for plants due to its function as antioxidant and protector against environmental stresses. The results showed that drought stress reduced the plant growth, fresh and dry biomass, and photosynthetic pigments of maize plants. Exogenous application of ascorbic acid lowered the drought stress-induced reduction in growth, biomass, and photosynthetic pigments. Drought stress enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in maize plants, and application of AsA further enhanced the activity of these enzymes. The results indicate that foliar application of AsA alleviated the detrimental effects of drought stress in maize plants by improving the antioxidative defense system. The cultivar EV-1098 was found to be relatively resistant to drought stress. Our research suggested that foliarly applied AsA may be useful for the sustainable maize production under drought-stressed ecologies.
引用
收藏
页码:1659 / 1672
页数:14
相关论文
共 50 条
  • [21] Biochemical characterization of maize (Zea mays L.) for salt tolerance
    Hussain, I.
    Ashraf, M. Arslan
    Anwar, F.
    Rasheed, R.
    Niaz, M.
    Wahid, A.
    PLANT BIOSYSTEMS, 2014, 148 (05): : 1016 - 1026
  • [22] Physiological and biochemical response of safflower (Carthamus tinctorius L.) cultivars to zinc application under drought stress
    Manvelian, Jivani
    Weisany, Weria
    Tahir, Nawroz Abdul-razzak
    Jabbari, Hamid
    Diyanat, Marjan
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 172
  • [23] Evaluation of drought and salinity stress effects on germination and early growth of two cultivars of maize (Zea mays L.)
    Khodarahmpour, Zahra
    Motamedi, Mohammad
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2011, 10 (66): : 14868 - 14872
  • [24] β-aminobutyric acid mediated drought stress alleviation in maize (Zea mays L.)
    Shaw, Arun K.
    Bhardwaj, Pardeep K.
    Ghosh, Supriya
    Roy, Sankhajit
    Saha, Suman
    Sherpa, Ang R.
    Saha, Samir K.
    Hossain, Zahed
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (03) : 2437 - 2453
  • [25] Physiological Characteristic Changes and Transcriptome Analysis of Maize (Zea mays L.) Roots under Drought Stress
    Zou, Chenglin
    Tan, Hua
    Huang, Kaijian
    Zhai, Ruining
    Yang, Meng
    Huang, Aihua
    Wei, Xinxing
    Mo, Runxiu
    Xiong, Faqian
    INTERNATIONAL JOURNAL OF GENOMICS, 2024, 2024
  • [26] Exogenous Application of Humic Acid Mitigates Salinity Stress in Maize (Zea mays L.) Plants by Improving some Key Physico-biochemical Attributes
    Kaya, C.
    Akram, N. A.
    Ashraf, M.
    Sonmez, O.
    CEREAL RESEARCH COMMUNICATIONS, 2018, 46 (01) : 67 - 78
  • [27] Responses of morphological, physiological, and biochemical characteristics of maize (Zea mays L.) seedlings to atrazine stress
    Bibi, Shagufta
    Khan, Sarzamin
    Taimur, Nadia
    Daud, Muhammad K.
    Azizullah, Azizullah
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2019, 191 (12)
  • [28] Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage
    Chugh, Vishal
    Kaur, Narinder
    Grewal, M. S.
    Gupta, Anil K.
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2013, 50 (02) : 150 - 158
  • [29] Influence of exogenous abscisic acid on morpho-physiological and yield of maize (Zea mays L.) under drought stress
    Sellamuthu, Ramya
    Dhanarajan, Arulbalachandran
    Marimuthu, Ramachandran
    PLANT SCIENCE TODAY, 2022, 9 (02): : 288 - 300
  • [30] GENERATION MEAN ANALYSIS IN MAIZE (ZEA MAYS L.) UNDER DROUGHT STRESS
    Moharramnejad, Sajjad
    Valizadeh, Mostafa
    Emaratpardaz, Javid
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (04): : 2518 - 2522