Hyperconvexity and tight-span theory for diversities

被引:21
作者
Bryant, David [1 ]
Tupper, Paul F. [2 ]
机构
[1] Univ Otago, Dept Math & Stat, Dunedin 9054, New Zealand
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词
Tight span; Injective hull; Hyperconvex; Diversity; Metric geometry; METRIC-SPACES; TREES;
D O I
10.1016/j.aim.2012.08.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The tight span, or injective envelope, is an elegant and useful construction that takes a metric space and returns the smallest hyperconvex space into which it can be embedded. The concept has stimulated a large body of theory and has applications to metric classification and data visualisation. Here we introduce a generalisation of metrics, called diversities, and demonstrate that the rich theory associated to metric tight spans and hyperconvexity extends to a seemingly richer theory of diversity tight spans and hyperconvexity. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:3172 / 3198
页数:27
相关论文
共 44 条
  • [1] Adamek J, 1990, PURE APPL MATH
  • [2] [Anonymous], 2005, Annual report of the Clay Mathematics Institute
  • [3] [Anonymous], 1974, J. Comb. Theory, Ser. B, DOI DOI 10.1016/0095-8956(74)90047-1
  • [4] [Anonymous], 1997, ANN COMB, DOI DOI 10.1007/BF02558484
  • [5] Aronszajn N., 1956, Pacific J. Math., V6, P405
  • [6] A CANONICAL DECOMPOSITION-THEORY FOR METRICS ON A FINITE-SET
    BANDELT, HJ
    DRESS, AWM
    [J]. ADVANCES IN MATHEMATICS, 1992, 92 (01) : 47 - 105
  • [7] BEYER W A, 1974, Mathematical Biosciences, V19, P9, DOI 10.1016/0025-5564(74)90028-5
  • [8] Neighbor-Net: An agglomerative method for the construction of phylogenetic networks
    Bryant, D
    Moulton, V
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2004, 21 (02) : 255 - 265
  • [9] CHEPOI V., 2007, SELECTED CONTRIBUTIO, P465
  • [10] Chiswell I., 2001, Introduction to -trees