Catalytic Phenol Hydroxylation with Dioxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix

被引:115
作者
Hoffmann, Alexander [1 ,2 ]
Citek, Cooper [3 ]
Binder, Stephan [4 ,5 ]
Goos, Arne [4 ,5 ]
Ruebhausen, Michael [4 ,5 ]
Troeppner, Oliver [6 ]
Ivanovic-Burmazovic, Ivana [6 ]
Wasinger, Erik C. [7 ]
Stack, T. Daniel P. [3 ]
Herres-Pawlis, Sonja [1 ,2 ]
机构
[1] Univ Munich, Dept Chem, D-81377 Munich, Germany
[2] Tech Univ Dortmund, Fak Chem, D-44227 Dortmund, Germany
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Univ Hamburg, Inst Appl Phys, Hamburg, Germany
[5] Univ Hamburg, Ctr Free Electron Laser, Hamburg, Germany
[6] Univ Erlangen Nurnberg, Dept Chem & Pharm, Nurnberg, Germany
[7] Calif State Univ Chico, Dept Chem & Biochem, Chico, CA 95929 USA
基金
美国国家卫生研究院;
关键词
bioinorganic chemistry; copper; dioxygen; homogeneous catalysis; tyrosinase; MODEL SYSTEM; PEROXODICOPPER(II) COMPLEX; COPPER(I) COMPLEX; BINDING; OXYGENATION; REACTIVITY; CATECHOLS; LIGAND; SUBSTRATE; INSIGHT;
D O I
10.1002/anie.201301249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new catalyst (see structure) hydroxylates phenols with O2 via a stable side-on peroxide complex, which is similar to the active site of tyrosinase in terms of the ligand environment and its spectroscopic properties. The catalytic oxidation of phenols to quinones proceeds at room temperature in the presence of NEt3 and even non-native substrates can be oxidized catalytically. The reaction mechanism is analogous to that of the enzyme-catalyzed reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:5398 / 5401
页数:4
相关论文
共 41 条
[1]  
[Anonymous], 2010, Angew. Chem. Int. Ed, V49, P6438, Patent No. 4545937
[2]  
Bulkowski J. E., 1984, ANGEW CHEM INT ED, Patent No. 4545937
[3]   A TYROSINASE MODEL SYSTEM - PHENOL ORTHO-HYDROXYLATION BY A BINUCLEAR 3-COORDINATE COPPER(I) COMPLEX AND DIOXYGEN [J].
CASELLA, L ;
GULLOTTI, M ;
RADAELLI, R ;
DIGENNARO, P .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1991, (22) :1611-1612
[4]   Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation [J].
Citek, Cooper ;
Lyons, Christopher T. ;
Wasinger, Erik C. ;
Stack, T. Daniel P. .
NATURE CHEMISTRY, 2012, 4 (04) :317-322
[5]   SYNTHETIC MODELS FOR OXYGEN-BINDING HEMOPROTEINS [J].
COLLMAN, JP .
ACCOUNTS OF CHEMICAL RESEARCH, 1977, 10 (07) :265-272
[6]  
delMarGarcia-Molina M., 2012, J AGR FOOD CHEM, V60, p6447 6453
[7]   Catechols from abietic acid:: Synthesis and evaluation as bioactive compounds [J].
Gigante, B ;
Santos, C ;
Silva, AM ;
Curto, MJM ;
Nascimento, MSJ ;
Pinto, E ;
Pedro, M ;
Cerqueira, F ;
Pinto, MM ;
Duarte, MP ;
Laires, A ;
Rueff, J ;
Gonçalves, J ;
Pegado, MI ;
Valdeira, ML .
BIOORGANIC & MEDICINAL CHEMISTRY, 2003, 11 (08) :1631-1638
[8]   One-pot synthesis of substituted catechols from the corresponding phenols [J].
Hansen, TV ;
Skattebol, L .
TETRAHEDRON LETTERS, 2005, 46 (19) :3357-3358
[9]   Ligand influences in copper-dioxygen complex-formation and substrate oxidations [J].
Hatcher, LQ ;
Karlin, KD .
ADVANCES IN INORGANIC CHEMISTRY INCLUDING BIOINORGANIC STUDIES, VOL 58: HOMOGENEOUS BIOMIMETIC OXIDATION CATALYSIS, 2006, 58 :131-184
[10]   Phenolate Hydroxylation in a Bis(μ-oxo)dicopper(III) Complex: Lessons from the Guanidine/Amine Series [J].
Herres-Pawlis, Sonia ;
Verma, Pratilk ;
Haase, Roxana ;
Kang, Peng ;
Lyons, Christopher T. ;
Wasinger, Erik C. ;
Floerke, Ulrich ;
Henkel, Gerald ;
Stack, T. Daniel P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :1154-1169