From mesophilic to thermophilic conditions: one-step temperature increase improves the methane production of a granular sludge treating agroindustrial effluents

被引:9
作者
Figueroa-Gonzalez, Ivonne [1 ]
Moreno, Gloria [1 ]
Carrillo-Reyes, Julian [1 ]
Sanchez, Arturo [3 ]
Quijano, Guillermo [1 ,2 ]
Buitron, German [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Unidad Acad Juriquilla, Inst Ingn, Lab Res Adv Proc Water Treatment, Blvd Juriquilla 3001, Queretaro 76230, Mexico
[2] Univ Nacl Autonoma Mexico, Unidad Acad Juriquilla, CONACYT, Inst Ingn, Mexico City, DF, Mexico
[3] IPN, Ctr Invest & Estudios Avanzados, Bioenergy Futures Lab, Adv Engn Unit, Zapopan, Jalisco, Mexico
关键词
Anaerobic digestion; Biokinetic parameters; Biomethane potential; Granular sludge; Thermophilic conditions; ANAEROBIC-DIGESTION; BIOREFINERY CONCEPT; WASTE;
D O I
10.1007/s10529-017-2490-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To assess the effect of one-step temperature increase, from 35 to 55 A degrees C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor. One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8-2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2-2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 A degrees C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions. More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.
引用
收藏
页码:569 / 575
页数:7
相关论文
共 17 条
[1]   Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects - a review [J].
Amani, T. ;
Nosrati, M. ;
Sreekrishnan, T. R. .
ENVIRONMENTAL REVIEWS, 2010, 18 :255-278
[2]   Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays [J].
Angelidaki, I. ;
Alves, M. ;
Bolzonella, D. ;
Borzacconi, L. ;
Campos, J. L. ;
Guwy, A. J. ;
Kalyuzhnyi, S. ;
Jenicek, P. ;
van Lier, J. B. .
WATER SCIENCE AND TECHNOLOGY, 2009, 59 (05) :927-934
[3]  
[Anonymous], 2005, Standard methods for the examination of water and waste- water
[4]   Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion [J].
Appels, Lise ;
Degreve, Jan ;
Van der Bruggen, Bart ;
Van Impe, Jan ;
Dewil, Raf .
BIORESOURCE TECHNOLOGY, 2010, 101 (15) :5743-5748
[5]   Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment [J].
Cardena, Rene ;
Moreno, Gloria ;
Bakonyi, Peter ;
Buitron, German .
CHEMICAL ENGINEERING JOURNAL, 2017, 307 :948-954
[6]   Temperature conversion (mesophilic to thermophilic) of municipal sludge digestion [J].
de la Rubia, MA ;
Romero, LI ;
Sales, D ;
Perez, M .
AICHE JOURNAL, 2005, 51 (09) :2581-2586
[7]   Enhancing the biomethane potential of liquid dairy cow manure by addition of solid manure fractions [J].
Diaz, Israel ;
Figueroa-Gonzalez, Ivonne ;
Angel Miguel, Jose ;
Bonilla-Morte, Luis ;
Quijano, Guillermo .
BIOTECHNOLOGY LETTERS, 2016, 38 (12) :2097-2102
[8]   Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment [J].
Kan, Xiang ;
Yao, Zhiyi ;
Zhang, Jingxin ;
Tong, Yen Wah ;
Yang, Wenming ;
Dai, Yanjun ;
Wang, Chi-Hwa .
BIORESOURCE TECHNOLOGY, 2017, 228 :77-88
[9]   Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept [J].
Kaparaju, Prasad ;
Serrano, Maria ;
Thomsen, Anne Belinda ;
Kongjan, Prawit ;
Angelidaki, Irini .
BIORESOURCE TECHNOLOGY, 2009, 100 (09) :2562-2568
[10]   Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge [J].
Lee, Dong-Yeol ;
Ebie, Yoshitaka ;
Xu, Kai-Qin ;
Li, Yu-You ;
Inamori, Yuhei .
BIORESOURCE TECHNOLOGY, 2010, 101 :S42-S47