共 68 条
An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity
被引:27
作者:
Borrego, Pedro
[1
,2
]
Calado, Rita
[1
,2
]
Marcelino, Jose M.
[3
]
Pereira, Patricia
[2
,4
]
Quintas, Alexandre
[1
,2
]
Barroso, Helena
[1
,2
]
Taveira, Nuno
[1
,2
]
机构:
[1] Univ Lisbon, Fac Farm, Ctr Patogenese Mol URIA CPM, Unidade Retrovirus & Infeccoes Assoc, P-1649019 Lisbon, Portugal
[2] Inst Super Ciencias Saude Egas Moniz, Ctr Invest Interdisciplinar Egas Moniz CiiEM, Caparica, Portugal
[3] Univ Nova Lisboa IHMT UNL, Inst Higiene & Med Trop, Unidade Microbiol Med, Lisbon, Portugal
[4] Univ Lisbon, Fac Farm, Res Inst Med & Pharmaceut Sci iMed UL, P-1699 Lisbon, Portugal
来源:
关键词:
ancestral P3 peptide;
inhibition of HIV-1 and HIV-2 cell fusion and entry;
P3 antigenic reactivity;
P3 mechanism of action;
resistance to P3;
PROTEIN SECONDARY STRUCTURE;
RESPONSE CURVE SLOPE;
GENETIC DIVERSITY;
TYPE-1;
GP41;
ENFUVIRTIDE;
SAFETY;
SUSCEPTIBILITY;
IDENTIFICATION;
DETERMINANTS;
DICHROWEB;
D O I:
10.1097/QAD.0b013e32835edc1d
中图分类号:
R392 [医学免疫学];
Q939.91 [免疫学];
学科分类号:
100102 ;
摘要:
Objectives: To produce new fusion inhibitor peptides for HIV-1 and HIV-2 based on ancestral envelope sequences. Methods: HIV-2/simian immunodeficiency virus (SIV) ancestral transmembrane protein sequences were reconstructed and ancestral peptides were derived from the helical region 2 (HR2). The activity of one ancestral peptide (named P3) was examined against a panel of HIV-1 and HIV-2 primary isolates in TZM-bl cells and peripheral blood mononuclear cells and compared to T-20. Peptide secondary structure was analyzed by circular dichroism. Resistant viruses were selected and resistance mutations were identified by sequencing the env gene. Results: P3 has 34 residues and overlaps the N-terminal pocket-binding region and heptad repeat core of HR2. In contrast to T-20, P3 forms a typical a-helical structure in solution, binds strongly to the transmembrane protein, and potently inhibits both HIV-2 (mean IC50, 63.8 nmol/l) and HIV-1 (11 nmol/l) infection, including T-20-resistant isolates. The N43K mutation in the HR1 region of HIV-1 leads to 120-fold resistance to P3 indicating that the HR1 region in transmembrane glycoprotein is the target of P3. No HIV-2-resistant mutations could be selected by P3 suggesting that the genetic barrier to resistance is higher in HIV-2 than in HIV-1. HIV-1-infected patients presented significantly lower P3-specific antibody reactivity compared to T-20. Conclusion: P3 is an HIV-2/SIV ancestral peptide with low antigenicity, high stability, and potent activity against both HIV-1, including variants resistant to T-20, and HIV-2. Similar evolutionary biology strategies should be explored to enhance the production of antiviral peptide drugs, microbicides, and vaccines. (C) 2013 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins AIDS 2013, 27:1081-1090
引用
收藏
页码:1081 / 1090
页数:10
相关论文